Molecular Plant Breeding 2025, Vol.16, No.3, 156-164 http://genbreedpublisher.com/index.php/mpb 163 Eid A., Mohan C., Sánchez S., Wang D., and Altpeter F., 2021, Multiallelic, targeted mutagenesis of magnesium chelatase with CRISPR/Cas9 provides a rapidly scorable phenotype in highly polyploid sugarcane, Frontiers in Genome Editing, 3: 654996. https://doi.org/10.3389/fgeed.2021.654996 Erdoğan İ., Cevher-Keskin B., Bilir Ö., Hong Y., and Tör M., 2023, Recent developments in CRISPR/Cas9 genome-editing technology related to plant disease resistance and abiotic stress tolerance, Biology, 12(7): 1037. https://doi.org/10.3390/biology12071037 Farhat S., Jain N., Singh N., Sreevathsa R., Dash P., Rai R., Yadav S., Kumar P., Sarkar A., Jain A., Singh N., and Rai V., 2019, CRISPR-Cas9 directed genome engineering for enhancing salt stress tolerance in rice, Seminars in Cell and Developmental Biology, 96: 91-99. https://doi.org/10.1016/j.semcdb.2019.05.003 Haque E., Taniguchi H., Hassan M., Bhowmik P., Karim R., Śmiech M., Zhao K., Rahman M., and Islam T., 2018, Application of CRISPR/Cas9 genome editing technology for the improvement of crops cultivated in tropical climates: recent progress, prospects, and challenges, Frontiers in Plant Science, 9: 617. https://doi.org/10.3389/fpls.2018.00617 Huang Y.P., and Lin H.M., 2024, Syntenic relationships and chromosomal evolution in the legume family, Legume Genomics and Genetics, 15(4): 152-162. https://doi.org/10.5376/lgg.2024.15.0016 Hussin S., Liu X., Li C., Diaby M., Jatoi G., Ahmed R., Imran M., and Iqbal M., 2022, An updated overview on insights into sugarcane genome editing via CRISPR/Cas9 for sustainable production, Sustainability, 14(19): 12285. https://doi.org/10.3390/su141912285 Krishna S., Chandar S., Ravi M., Valarmathi R., Lakshmi K., Prathima P., Manimekalai R., Viswanathan R., Hemaprabha G., and Appunu C., 2023, Transgene-free genome editing for biotic and abiotic stress resistance in sugarcane: prospects and challenges, Agronomy, 13(4): 1000. https://doi.org/10.3390/agronomy13041000 Kumar M., Prusty M., Pandey M., Singh P., Bohra A., Guo B., and Varshney R., 2023, Application of CRISPR/Cas9-mediated gene editing for abiotic stress management in crop plants, Frontiers in Plant Science, 14: 1157678. https://doi.org/10.3389/fpls.2023.1157678 Kumar T., Wang J., Xu C., Lu X., Mao J., Lin X., Kong C., Li C., Li X., Tian C., Ebid M., Liu X., and Liu H., 2024, Genetic engineering for enhancing sugarcane tolerance to biotic and abiotic stresses, Plants, 13(13): 1739. https://doi.org/10.3390/plants13131739 Kumar V., Verma R., Yadav S., Yadav P., Watts A., Rao M., and Chinnusamy V., 2020, CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010, Physiology and Molecular Biology of Plants, 26: 1099-1110. https://doi.org/10.1007/s12298-020-00819-w Laksana C., Sophiphun O., and Chanprame S., 2024, Lignin reduction in sugarcane by performing CRISPR/Cas9 site-direct mutation of SoLIM transcription factor, Plant Science, 340: 111987. https://doi.org/10.1016/j.plantsci.2024.111987 Li C., Brant E., Budak H., and Zhang B., 2021, CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement, Journal of Zhejiang University- Science B, 22: 253-284. https://doi.org/10.1631/jzus.B2100009 Li Y., Wu X., Zhang Y., and Zhang Q., 2022, CRISPR/Cas genome editing improves abiotic and biotic stress tolerance of crops, Frontiers in Genome Editing, 4: 987817. https://doi.org/10.3389/fgeed.2022.987817 Liu Q., Yang F., Zhang J., Liu H., Rahman S., Islam S., Ma W., and She M., 2021, Application of CRISPR/Cas9 in crop quality improvement, International Journal of Molecular Sciences, 22(8): 4206. https://doi.org/10.3390/ijms22084206 Lu Y.Q., 2024, CRISPR/Cas9 in poplar lignin biosynthesis: advances and future prospects, Tree Genetics and Molecular Breeding, 14(1): 32-42. https://doi.org/10.5376/tgmb.2024.14.0005 Mir R., Mandal S., Mitra S., Ghorai M., Das N., Jha N., Majumder M., Pandey D., and Dey A., 2022, CRISPR/Cas genome-editing toolkit to enhance salt stress tolerance in rice and wheat, Physiologia Plantarum, 174(2): e13642. https://doi.org/10.1111/ppl.13642 Mohan C., 2016, Genome editing in sugarcane: challenges ahead, Frontiers in Plant Science, 7: 1542. https://doi.org/10.3389/fpls.2016.01542 Muha-Ud-Din G., Ali F., Hameed A., Naqvi S., Nizamani M., Jabran M., Sarfraz S., and Yong W., 2023, CRISPR/Cas9-based genome editing: a revolutionary approach for crop improvement and global food security, Physiological and Molecular Plant Pathology, 129: 102191. https://doi.org/10.1016/j.pmpp.2023.102191 Oz M., Altpeter A., Karan R., Merotto A., and Altpeter F., 2021, CRISPR/Cas9-mediated multi-allelic gene targeting in sugarcane confers herbicide tolerance, Frontiers in Genome Editing, 3: 673566. https://doi.org/10.3389/fgeed.2021.673566 Tanveer M., Abidin Z., Alawadi H., Shahzad A., Mahmood A., Khan B., Qari S., and Oraby H., 2024, Recent advances in genome editing strategies for balancing growth and defence in sugarcane (Saccharum officinarum), Functional Plant Biology, 51: FP24036. https://doi.org/10.1071/fp24036
RkJQdWJsaXNoZXIy MjQ4ODYzNA==