MPB_2025v16n2

Molecular Plant Breeding 2025, Vol.16, No.2, 146-155 http://genbreedpublisher.com/index.php/mpb 155 Prigge V., Xu X., Li L., Babu R., Chen S., Atlin G., and Melchinger A., 2012, New insights into the genetics of in vivo induction of maternal haploids, the backbone of doubled haploid technology in maize, Genetics, 190(2): 781-793. https://doi.org/10.1534/genetics.111.133066 Ren J., Boerman N., Liu R., Wu P., Trampe B., Vanous K., Frei U., Chen S., and Lübberstedt T., 2020, Mapping of QTL and identification of candidate genes conferring spontaneous haploid genome doubling in maize (Zeamays L.), Plant Science, 293: 110337. https://doi.org/10.1016/j.plantsci.2019.110337 Ren J., Li Z., Wu P., Zhang A., Liu Y., Hu G., Cao S., Qu J., Dhliwayo T., Zheng H., Olsen M., Prasanna B., Vicente F., and Zhang X., 2021, Genetic dissection of quantitative resistance to common rust (Puccinia sorghi) in tropical maize (Zeamays L.) by combined genome-wide association study, linkage mapping, and genomic prediction, Frontiers in Plant Science, 12: 692205. https://doi.org/10.3389/fpls.2021.692205 Sadessa K., Beyene Y., Ifie B., Suresh L., Olsen M., Ogugo V., Wegary D., Tongoona P., Danquah E., Offei S., Prasanna B., and Gowda M., 2022, Identification of genomic regions associated with agronomic and disease resistance traits in a large set of multiple DH populations, Genes, 13(2): 351. https://doi.org/10.3390/genes13020351 Shaibu A., Badu‐Apraku B., and Ayo-Vaughan M., 2021, Enhancing drought tolerance and Striga hermonthica resistance in maize using newly derived inbred lines from the wild maize relative, Zea diploperennis, Agronomy, 11(1): 177. https://doi.org/10.3390/agronomy11010177 Smelser A., Gardner C., Blanco M., Lübberstedt T., and Frei U., 2016, Germplasm enhancement of maize: a look into haploid induction and chromosomal doubling of haploids from temperate‐adapted tropical sources, Plant Breeding, 135: 593-597. https://doi.org/10.1111/pbr.12397 Smith J., Hussain T., Jones E., Graham G., Podlich D., Wall S., and Williams M., 2008, Use of doubled haploids in maize breeding: implications for intellectual property protection and genetic diversity in hybrid crops, Molecular Breeding, 22: 51-59. https://doi.org/10.1007/s11032-007-9155-1 Trentin H., Frei U., and Lübberstedt T., 2020, Breeding maize maternal haploid inducers, Plants, 9(5): 614. https://doi.org/10.3390/plants9050614 Vivek B., Odongo O., Njuguna J., Imanywoha J., Bigirwa G., Diallo A., and Pixley K., 2010, Diallel analysis of grain yield and resistance to seven diseases of 12 African maize (Zeamays L.) inbred lines, Euphytica, 172: 329-340. https://doi.org/10.1007/s10681-009-9993-5 Wang B., Zhu L., Zhao B., Zhao Y., Xie Y., Zheng Z., Li Y., Sun J., and Wang H., 2019, Development of a Haploid-inducer mediated genome editing system for accelerating maize breeding, Molecular Plant, 12(4): 597-602. https://doi.org/10.1016/j.molp.2019.03.006 Wang S., Wang X., Zhang R., Liu Q., Sun X., Wang J., Wang Y., Xing J., Liu Y., Zhao Y., Shi Z., Su A., Li C., Xiao S., Jiao Y., Li Z., Wang R., Song W., and Zhao J., 2022, RppM, Encoding a typical CC-NBS-LRR protein, confers resistance to southern corn rust in maize, Frontiers in Plant Science, 13: 951318. https://doi.org/10.3389/fpls.2022.951318 Wang Y., Tang Q., Pu L., Zhang H., and Li X., 2022, CRISPR-Cas technology opens a new era for the creation of novel maize germplasms, Frontiers in Plant Science, 13: 1049803. https://doi.org/10.3389/fpls.2022.1049803 Yang Q., Balint-Kurti P., and Xu M., 2017, Quantitative disease resistance: dissection and adoption in maize, Molecular Plant, 10(3): 402-413. https://doi.org/10.1016/j.molp.2017.02.004 Zhou G., Hao D., Mao Y., Zhu Q., Chen G., Lu H., Shi M., Huang X., Zhang Z., Zhao J., and Xue L., 2018, Identification of genetic loci conferring partial resistance to southern corn rust through a genome-wide association study, European Journal of Plant Pathology, 150: 1083-1090. https://doi.org/10.1007/s10658-017-1351-1 Zhu M., Tong L., Xu M., and Zhong T., 2021, Genetic dissection of maize disease resistance and its applications in molecular breeding, Molecular Breeding, 41: 32. https://doi.org/10.1007/s11032-021-01219-y

RkJQdWJsaXNoZXIy MjQ4ODYzNA==