MPB_2025v16n2

Molecular Plant Breeding 2025, Vol.16, No.2, 146-155 http://genbreedpublisher.com/index.php/mpb 154 Andorf C., Beavis W., Hufford M., Smith S., Suza W., Wang K., Woodhouse M., Yu J., and Lübberstedt T., 2019, Technological advances in maize breeding: past, present and future, Theoretical and Applied Genetics, 132: 817-849. https://doi.org/10.1007/s00122-019-03306-3 Boerman N., Frei U., and Lübberstedt T., 2020, Impact of spontaneous haploid genome doubling in maize breeding, Plants, 9(3): 369. https://doi.org/10.3390/plants9030369 Chaikam V., Molenaar W., Melchinger A., and Boddupalli P., 2019, Doubled haploid technology for line development in maize: technical advances and prospects, Theoretical and Applied Genetics, 132: 3227-3243. https://doi.org/10.1007/s00122-019-03433-x Chaikam V., Nair S., Martinez L., Lopez L., Utz H., Melchinger A., and Boddupalli P., 2018, Marker-assisted breeding of improved maternal haploid inducers in maize for the tropical/subtropical regions, Frontiers in Plant Science, 9: 1527. https://doi.org/10.3389/fpls.2018.01527 Dwivedi S., Britt A., Tripathi L., Sharma S., Upadhyaya H., and Ortiz R., 2015, Haploids: constraints and opportunities in plant breeding, Biotechnology Advances, 33(6): 812-829. https://doi.org/10.1016/j.biotechadv.2015.07.001 Hou J., Zhang J., Bao F., Zhang P., Han H., Tan H., Chen B., and Zhao F., 2024, The contribution of exotic varieties to maize genetic improvement, Molecular Plant Breeding, 15(4): 198-208. https://doi.org/10.5376/mpb.2024.15.0020 Kleiber D., Prigge V., Melchinger A., Burkard F., Vicente F., Palomino G., and Gordillo G., 2012, Haploid fertility in temperate and tropical maize germplasm, Crop Science, 52: 623-630. https://doi.org/10.2135/cropsci2011.07.0395 Liu C., Zhong Y., Qi X., Chen M., Liu Z., Chen C., Tian X., Li J., Jiao Y., Wang D., Wang Y., Li M., Xin M., Liu W., Jin W., and Chen S., 2019, Extension of the in vivo haploid induction system from diploid maize to hexaploid wheat, Plant Biotechnology Journal, 18: 316-318. https://doi.org/10.1111/pbi.13218 Li J., Cheng D., Guo S., Chen C., Wang Y., Zhong Y., Qi X., Liu Z., Wang D., Wang Y., Liu W., Liu C., and Chen S., 2023, Genome-wide association and genomic prediction for resistance to southern corn rust in DH and testcross populations, Frontiers in Plant Science, 14: 1109116. https://doi.org/10.3389/fpls.2023.1109116 Li L., and Huang W.Z., 2024, The genetic basis of nutritional quality traits in maize: Insights from GWAS, Maize Genomics and Genetics, 15(1): 17-24. https://doi.org/10.5376/mgg.2024.15.0003 López-Castillo L., Silva-Fernández S., Winkler R., Bergvinson D., Arnason J., and García‐Lara S., 2018, Postharvest insect resistance in maize, Journal of Stored Products Research, 77: 66-76. https://doi.org/10.1016/j.jspr.2018.03.004 Lu L., Xu Z., Sun S., Du Q., Zhu Z., Weng J., and Duan C., 2020, Discovery and fine mapping of qSCR6.01, a novel major QTL conferring southern rust resistance in maize, Plant Disease, 104(7): 1918-1924. https://doi.org/10.1094/PDIS-01-20-0053-RE Meng D., Liu C., Chen S., and Jin W., 2021, Haploid induction and its application in maize breeding, Molecular Breeding, 41: 20. https://doi.org/10.1007/s11032-021-01204-5 Meng D., Luo H., Dong Z., Huang W., Liu F., Li F., Chen S., Yu H., and Jin W., 2022, Overexpression of modified CENH3 in maize stock6-derived inducer lines can effectively improve maternal haploid induction rates, Frontiers in Plant Science, 13: 892055. https://doi.org/10.3389/fpls.2022.892055 Miedaner T., Boeven A., Gaikpa D., Kistner M., and Grote C., 2020, Genomics-assisted breeding for quantitative disease resistances in small-grain cereals and maize, International Journal of Molecular Sciences, 21(24): 9717. https://doi.org/10.3390/ijms21249717 Nelson R., Wiesner-Hanks T., Wisser R., and Balint-Kurti P., 2017, Navigating complexity to breed disease-resistant crops, Nature Reviews Genetics, 19: 21-33. https://doi.org/10.1038/nrg.2017.82 Nyoni R., Magorokosho C., and Kamutando C., 2023, Potential of temperate, tropical, and sub-tropical exotic maize germplasm for increased gains in yield performance in sub-tropical breeding programs, Agronomy, 13(6): 1605. https://doi.org/10.3390/agronomy13061605 Prasanna B., Cairns J., Zaidi P., Beyene Y., Makumbi D., Gowda M., Magorokosho C., Zaman-Allah M., Olsen M., Das A., Worku M., Gethi J., Vivek B., Nair S., Rashid Z., Vinayan M., Issa A., Vicente F., Dhliwayo T., and Zhang X., 2021, Beat the stress: breeding for climate resilience in maize for the tropical rainfed environments, Theoretical and Applied Genetics, 134: 1729-1752. https://doi.org/10.1007/s00122-021-03773-7 Prigge V., Sánchez C., Dhillon B., Schipprack W., Araus J., Bänziger M., and Melchinger A., 2011, Doubled haploids in tropical maize: I. effects of inducers and source germplasm on in vivo haploid induction rates, Crop Science, 51(4): 1498-1506. https://doi.org/10.2135/cropsci2010.10.0568

RkJQdWJsaXNoZXIy MjQ4ODYzNA==