MPB_2025v16n2

Molecular Plant Breeding 2025, Vol.16, No.2, 133-145 http://genbreedpublisher.com/index.php/mpb 145 Wang H., Wu Y., Zhang Y., Yang J., Fan W., Zhang H., Zhao S., Yuan L., and Zhang P., 2019, CRISPR/Cas9-based mutagenesis of starch biosynthetic genes in sweet potato (Ipomoea batatas) for the improvement of starch quality, International Journal of Molecular Sciences, 20(19): 4702. https://doi.org/10.3390/ijms20194702 Xiong J., Tang X., Wei M., and Yu W., 2022, Comparative full-length transcriptome analysis by Oxford Nanopore Technologies reveals genes involved in anthocyanin accumulation in storage roots of sweet potatoes (Ipomoea batatas L.), PeerJ, 10: e13688. https://doi.org/10.7717/peerj.13688 Yamakawa H., Haque E., Tanaka M., Takagi H., Asano K., Shimosaka E., Akai K., Okamoto S., Katayama K., and Tamiya S., 2021, Polyploid QTL-seq towards rapid development of tightly linked DNA markers for potato and sweetpotato breeding through whole-genome resequencing, Plant Biotechnology Journal, 19(10): 2040-2051. https://doi.org/10.1111/pbi.13633 Yang J., Moeinzadeh M., Kuhl H., Helmuth J., Xiao P., Haas S., Liu G., Zheng J., Sun Z., Fan W., Deng G., Wang H., Hu F., Zhao S., Fernie A., Boerno S., Timmermann B., Zhang P., and Vingron M., 2017, Haplotype-resolved sweet potato genome traces back its hexaploidization history, Nature Plants, 3: 696-703. https://doi.org/10.1038/s41477-017-0002-z Yang Z., Zhu P., Kang H., Liu L., Cao Q., Sun J., Dong T., Zhu M., Li Z., and Xu T., 2020, High-throughput deep sequencing reveals the important role that microRNAs play in the salt response in sweet potato (Ipomoea batatas L.), BMC Genomics, 21: 164. https://doi.org/10.1186/s12864-020-6567-3 Zeist A., Leal M., Resende J., Rech C., Júnior A., Toroco B., Oliveira J., and Oliveira G., 2022, Selecting orange-fleshed sweet potato genotypes using selection indices, Horticultura Brasileira, 40(2): 231-237. https://doi.org/10.1590/s0102-0536-20220214 Zhai H., Wang F., Si Z., Huo J., Xing L., An Y., He S., and Liu Q., 2016, Amyo-inositol-1-phosphate synthase gene, IbMIPS1, enhances salt and drought tolerance and stem nematode resistance in transgenic sweet potato, Plant Biotechnology Journal, 14(2): 592-602. https://doi.org/10.1111/pbi.12402 Zhang H., Wang Z., Li X., Gao X., Dai Z., Cui Y., Zhi Y., Liu Q., Zhai H., Gao S., Zhao N., and He S., 2021, The IbBBX24-IbTOE3-IbPRX17 module enhances abiotic stress tolerance by scavenging reactive oxygen species in sweet potato, The New Phytologist, 233(3): 1133-1152. https://doi.org/10.1111/nph.17860 Zhang K., Luo K., Li S., Peng D., Tang D., Lu H., Zhao Y., Lv C., and Wang J., 2020a, Genetic variation and sequence diversity of starch biosynthesis and sucrose metabolism genes in sweet potato, Agronomy, 10(5): 627. https://doi.org/10.3390/agronomy10050627 Zhang K., Wu Z., Tang D., Lv C., Luo K., Zhao Y., Liu X., Huang Y., and Wang J., 2016, Development and identification of SSR markers associated with starch properties and β-carotene content in the storage root of sweet potato (Ipomoea batatas L.), Frontiers in Plant Science, 7: 223. https://doi.org/10.3389/fpls.2016.00223 Zhang K., Wu Z., Wu X., Han H., Ju X., Fan Y., Yang C., Tang D., Cao Q., Wang J., and Lv C., 2023, Regulatory and functional divergence among members of Ibβfruct2, a sweet potato vacuolar invertase gene controlling starch and glucose content, Frontiers in Plant Science, 14: 1192417. https://doi.org/10.3389/fpls.2023.1192417 Zhang L., Yu Y., Shi T., Kou M., Sun J., Xu T., Li Q., Wu S., Cao Q., Hou W., and Li Z., 2020b, Genome-wide analysis of expression quantitative trait loci (eQTLs) reveals the regulatory architecture of gene expression variation in the storage roots of sweet potato, Horticulture Research, 7: 90. https://doi.org/10.1038/s41438-020-0314-4

RkJQdWJsaXNoZXIy MjQ4ODYzNA==