MPB_2025v16n2

Molecular Plant Breeding 2025, Vol.16, No.2, 133-145 http://genbreedpublisher.com/index.php/mpb 144 Meng Y., Su W., Ma Y., Liu L., Gu X., Wu D., Shu X., Lai Q., Tang Y., Wu L., and Wang Y., 2021, Assessment of genetic diversity and variety identification based on developed retrotransposon-based insertion polymorphism (RBIP) markers in sweet potato (Ipomoea batatas (L.) Lam.), Scientific Reports, 11: 17116. https://doi.org/10.1038/s41598-021-95876-w Mohanraj R., and Sivasankar S., 2014, Sweet potato (Ipomoea batatas [L.] Lam)--a valuable medicinal food: a review, Journal of Medicinal Food, 17(7): 733-741. https://doi.org/10.1089/jmf.2013.2818 Ommen B., and Stierum R., 2002, Nutrigenomics: exploiting systems biology in the nutrition and health arena, Current Opinion in Biotechnology, 13(5): 517-521. https://doi.org/10.1016/S0958-1669(02)00349-X Otoboni M., Oliveira D., Vargas P., Pavan B., and Andrade M., 2020, Genetic parameters and gain from selection in sweet potato genotypes with high beta-carotene content, Crop Breeding and Applied Biotechnology, 20(3): e31632038. https://doi.org/10.1590/1984-70332020v20n3a42 Paliwal P., Jain D., Joshi A., Ameta K., Chaudhary R., and Singh A., 2020, Diversity analysis of Sweet Potato (Ipomoea batatas[L.] Lam) genotypes using morphological, biochemical and molecular markers, Indian Journal of Experimental Biology, 58: 276-285. https://doi.org/10.56042/ijeb.v58i04.65463 Peng Y., Pan R., Liu Y., Medison M., Shalmani A., Yang X., and Zhang W., 2022, LncRNA-mediated ceRNA regulatory network provides new insight into chlorogenic acid synthesis in sweet potato, Physiologia Plantarum, 174(6): e13826. https://doi.org/10.1111/ppl.13826 Qin T., Sun C., Kazim A., Cui S., Wang Y., Richard D., Yao P., Bi Z., Liu Y., and Bai J., 2022, Comparative transcriptome analysis of deep-rooting and shallow-rooting potato (Solanum tuberosumL.) genotypes under drought stress, Plants, 11(15): 2024. https://doi.org/10.3390/plants11152024 Ren Z., He S., Zhao N., Zhai H., and Liu Q., 2018, A sucrose non-fermenting-1-related protein kinase-1 gene, IbSnRK1, improves starch content, composition, granule size, degree of crystallinity and gelatinization in transgenic sweet potato, Plant Biotechnology Journal, 17(1): 21-32. https://doi.org/10.1111/pbi.12944 Rodriguez-Leal D., Lemmon Z., Man J., Bartlett M., and Lippman Z., 2017, Engineering quantitative trait variation for crop improvement by genome editing, Cell, 171(2): 470-480.E8. https://doi.org/10.1016/j.cell.2017.08.030 Schumacher C., Krannich C., Maletzki L., Köhl K., Kopka J., Sprenger H., Hincha D., Seddig S., Peters R., Hamera S., Zuther E., Haas M., and Horn R., 2021, Unravelling differences in candidate genes for drought tolerance in potato (Solanum tuberosumL.) by use of new functional microsatellite markers, Genes, 12(4): 494. https://doi.org/10.3390/genes12040494 Shekhar S., Mishra D., Buragohain A., Chakraborty S., and Chakraborty N., 2015, Comparative analysis of phytochemicals and nutrient availability in two contrasting cultivars of sweet potato (Ipomoea batatas L.), Food chemistry, 173: 957-965. https://doi.org/10.1016/j.foodchem.2014.09.172 Sprenger H., Erban A., Seddig S., Rudack K., Thalhammer A., Le M., Walther D., Zuther E., Köhl K., Kopka J., and Hincha D., 2017, Metabolite and transcript markers for the prediction of potato drought tolerance, Plant Biotechnology Journal, 16: 939-950. https://doi.org/10.1111/pbi.12840 Sun H., Mei J., Zhao W., Hou W., Zhang Y., Xu T., Wu S., and Zhang L., 2022a, Phylogenetic analysis of the SQUAMOSA promoter-binding protein-like genes in four Ipomoea species and expression profiling of the IbSPLs during storage root development in sweet potato (Ipomoea batatas), Frontiers in Plant Science, 12: 801061. https://doi.org/10.3389/fpls.2021.801061 Sun S., Li X., Gao S., Nie N., Zhang H., Yang Y., He S., Liu Q., and Zhai H., 2022b, A novel WRKY transcription factor fromIpomoea trifida, ItfWRKY70, confers drought tolerance in sweet potato, International Journal of Molecular Sciences, 23(2): 686. https://doi.org/10.3390/ijms23020686 Tang D., Gallusci P., and Lang Z., 2020, Fruit development and epigenetic modifications, The New Phytologist, 228(3): 839-844. https://doi.org/10.1111/nph.16724 Tao X., Gu Y., Wang H., Zheng W., Li X., Zhao C., and Zhang Y., 2012, Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato [Ipomoea batatas (L.) Lam.], PLoS One, 7(4): e36234. https://doi.org/10.1371/journal.pone.0036234 Tussipkan D., and Manabayeva S., 2021, Employing CRISPR/Cas technology for the improvement of potato and other tuber crops, Frontiers in Plant Science, 12: 747476. https://doi.org/10.3389/fpls.2021.747476 Wan L., Wang Z., Tang M., Hong D., Sun Y., Ren J., Zhang N., and Zeng H., 2021, CRISPR-Cas9 gene editing for fruit and vegetable crops: strategies and prospects, Horticulturae, 7(7): 193. https://doi.org/10.3390/horticulturae7070193 Wang F., Tan W., Song W., Yang S., and Qiao S., 2021, Transcriptome analysis of sweet potato responses to potassium deficiency, BMC Genomics, 23: 655. https://doi.org/10.1186/s12864-022-08870-5

RkJQdWJsaXNoZXIy MjQ4ODYzNA==