MPB_2025v16n2

Molecular Plant Breeding 2025, Vol.16, No.2, 133-145 http://genbreedpublisher.com/index.php/mpb 143 Ding N., Cui H., Miao Y., Tang J., Cao Q., and Luo Y., 2019, Single-molecule real-time sequencing identifies massive full-length cDNAs and alternative-splicing events that facilitate comparative and functional genomics study in the hexaploid crop sweet potato, PeerJ, 7: e7933. https://doi.org/10.7717/peerj.7933 Drapal M., and Fraser P., 2019, Determination of carotenoids in sweet potato (Ipomoea batatas L., Lam) tubers: implications for accurate provitamin A determination in staple sturdy tuber crops, Phytochemistry, 167: 112102. https://doi.org/10.1016/j.phytochem.2019.112102 Dutta M., Raturi V., Gahlaut V., Kumar A., Sharma P., Verma V., Gupta V., Sood S., and Zinta G., 2022, The interplay of DNA methyltransferases and demethylases with tuberization genes in potato (Solanum tuberosumL.) genotypes under high temperature, Frontiers in Plant Science, 13: 933740. https://doi.org/10.3389/fpls.2022.933740 Escobar-Puentes A., Palomo I., Rodriguez L., Fuentes E., Villegas-Ochoa M., González-Aguilar G., Olivas-Aguirre F., and Wall-Medrano A., 2022, Sweet potato (Ipomoea batatas L.) phenotypes: from agroindustry to health effects, Foods, 11(7): 1058. https://doi.org/10.3390/foods11071058 Gemenet D., Pereira G., Boeck B., Wood J., Mollinari M., Olukolu B., Diaz F., Mosquera V., Ssali R., David M., Kitavi M., Burgos G., Felde T., Ghislain M., Carey E., Swanckaert J., Coin L., Fei Z., Hamilton J., Yada B., Yencho G., Zeng Z., Mwanga R., Khan A., Gruneberg W., and Buell C., 2019, Quantitative trait loci and differential gene expression analyses reveal the genetic basis for negatively associated β-carotene and starch content in hexaploid sweetpotato [Ipomoea batatas (L.) Lam.], Theoretical and Applied Genetics, 133: 23-36. https://doi.org/10.1007/s00122-019-03437-7 Gerard D., Ferrão L., Garcia A., and Stephens M., 2018, Genotyping polyploids from messy sequencing data, Genetics, 210: 789-807. https://doi.org/10.1534/genetics.118.301468 Guo H., Zhou M., Zhang G., He L., Yan C., Wan M., Hu J., He W., Zeng D., Zhu B., and Zeng Z., 2023, Development of homozygous tetraploid potato and whole genome doubling-induced the enrichment of H3K27ac and potentially enhanced resistance to cold-induced sweetening in tubers, Horticulture Research, 10(3): uhad017. https://doi.org/10.1093/hr/uhad017 He J., Zhao X., Laroche A., Lu Z., Liu H., and Li Z., 2014, Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding, Frontiers in Plant Science, 5: 484. https://doi.org/10.3389/fpls.2014.00484 Hewezi T., 2017, Editorial: epigenetic regulation of plant development and stress responses, Plant Cell Reports, 37: 1-2. https://doi.org/10.1007/s00299-017-2233-x Hirakawa H., Okada Y., Tabuchi H., Shirasawa K., Watanabe A., Tsuruoka H., Minami C., Nakayama S., Sasamoto S., Kohara M., Kishida Y., Fujishiro T., Kato M., Nanri K., Komaki A., Yoshinaga M., Takahata Y., Tanaka M., Tabata S., and Isobe S., 2015, Survey of genome sequences in a wild sweet potato, Ipomoea trifida (H. B. K.) G. Don, DNA Research, 22(2): 171-179. https://doi.org/10.1093/dnares/dsv002 Karan Y., and Şanli Ö., 2021, The assessment of yield and quality traits of sweet potato (Ipomoea batatas L.) genotypes in middle Black Sea region, Turkey, PLoS One, 16(9): e0257703. https://doi.org/10.1371/journal.pone.0257703 Kronholm I., Bassett A., Baulcombe D., and Collins S., 2017, Epigenetic and genetic contributions to adaptation in chlamydomonas, Molecular Biology and Evolution, 34: 2285-2306. https://doi.org/10.1093/molbev/msx166 Kyriakidou M., Anglin N., Ellis D., Tai H., and Strömvik M., 2020, Genome assembly of six polyploid potato genomes, Scientific Data, 7: 88. https://doi.org/10.1038/s41597-020-0428-4 Lamaro G., Tsehaye Y., Girma A., Vannini A., Fedeli R., and Loppi S., 2023, Evaluation of yield and nutraceutical traits of orange-fleshed sweet potato storage roots in two agro-climatic zones of northern Ethiopia, Plants, 12(6): 1319. https://doi.org/10.3390/plants12061319 Lee K., Lee G., Lee J., Sebastin R., Shin M., Cho G., and Hyun D., 2019, Genetic diversity of sweet potato (Ipomoea batatas L. Lam) germplasms collected worldwide using chloroplast SSR markers, Agronomy, 9(11): 752. https://doi.org/10.3390/agronomy9110752 Li F., Wen W., Liu J., Zhang Y., Cao S., He Z., Rasheed A., Jin H., Zhang C., Yan J., Zhang P., Wan Y., and Xia X., 2019, Genetic architecture of grain yield in bread wheat based on genome-wide association studies, BMC Plant Biology, 19: 168. https://doi.org/10.1186/s12870-019-1781-3 Li R., Zhai H., Kang C., Liu D., He S., and Liu Q., 2015, De novo transcriptome sequencing of the orange-fleshed sweet potato and analysis of differentially expressed genes related to carotenoid biosynthesis, International Journal of Genomics, 2015: 843802. https://doi.org/10.1155/2015/843802 Maquia I., Muocha I., Naico A., Martins N., Gouveia M., Andrade I., Goulao L., and Ribeiro A., 2013, Molecular, morphological and agronomic characterization of the sweet potato (Ipomoea batatas L.) germplasm collection from Mozambique: genotype selection for drought prone regions, South African Journal of Botany, 88: 142-151. https://doi.org/10.1016/j.sajb.2013.07.008 Meng X., Liu S., Dong T., Xu T., Ma D., Pan S., Li Z., and Zhu M., 2020, Comparative transcriptome and proteome analysis of salt-tolerant and salt-sensitive sweet potato and overexpression of IbNAC7 confers salt tolerance in Arabidopsis, Frontiers in Plant Science, 11: 572540. https://doi.org/10.3389/fpls.2020.572540

RkJQdWJsaXNoZXIy MjQ4ODYzNA==