Molecular Plant Breeding 2025, Vol.16, No.2, 105-118 http://genbreedpublisher.com/index.php/mpb 117 Smita S., Katiyar A., Chinnusamy V., Pandey D., and Bansal K., 2015, Transcriptional regulatory network analysis of MYB transcription factor family genes in rice, Frontiers in Plant Science, 6: 1157. https://doi.org/10.3389/fpls.2015.01157 Solis J., Gutierrez A., Mangu V., Sánchez E., Bedre R., Linscombe S., and Baisakh N., 2018, Genetic mapping of quantitative trait loci for grain yield under drought in rice under controlled greenhouse conditions, Frontiers in Chemistry, 5: 129. https://doi.org/10.3389/fchem.2017.00129 Song G., Xu Z., Sun J., and Zhao X., 2024, Progress on the signal transduction and crosstalk mechanism of humic substances in promoting plant root and shoot growth, Guangdong Agricultural Sciences, 51(4): 136-148. Sun X., Xiong H., Jiang C., Zhang D., Yang Z., Huang Y., Zhu W., Ma S., Duan J., Wang X., Liu W., Guo H., Li G., Qi J., Liang C., Zhang Z., Li J., Zhang H., Han L., Zhou Y., Peng Y., and Li Z., 2022, Natural variation of DROT1 confers drought adaptation in upland rice, Nation Communication, 13: 4265. https://doi.org/10.1038/s41467-022-31844-w Ueda Y., Ohtsuki N., Kadota K., Tezuka A., Nagano A., Kadowaki T., Kim Y., Miyao M., and Yanagisawa S., 2020, Gene regulatory network and its constituent transcription factors that control nitrogen deficiency responses in rice, The New Phytologist, 227(5): 1434-1452. https://doi.org/10.1111/nph.16627 Volante A., Desiderio F., Tondelli A., Perrini R., Orasen G., Biselli C., Riccardi P., Vattari A., Cavalluzzo D., Urso S., Hassen M., Fricano A., Piffanelli P., Cozzi P., Biscarini F., Sacchi G., Cattivelli L., and Valè G., 2017, Genome-wide analysis of japonica rice performance under limited water and permanent flooding conditions, Frontiers in Plant Science, 8: 1862. https://doi.org/10.3389/fpls.2017.01862 Wang D., Pan Y., Zhao X., Zhu L., Fu B., and Li Z., 2011, Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice, BMC Genomics, 12: 149. https://doi.org/10.1186/1471-2164-12-149 Wang H, Tang J., Liu J., Hu J., Liu, J., Chen Y., Cai Z., Wang X., 2018, Abscisic acid signaling inhibits brassinosteroid signaling through dampening the dephosphorylation of BIN2 by ABI1 and ABI2, Molecular Plant, 11(2): 315-325. https://doi.org/10.1016/j.molp.2017.12.013 Wang H.,Ye T., Guo Z., Yao Y., Tu H., Wang P., Zhang Y., Wang Y., Li X., Li B., Xiong H., Lai X., and Xiong L., 2024, A double-stranded RNA binding protein enhances drought resistance via protein phase separation in rice, Nature Communications,15: 2514. https://doi.org/10.1038/s41467-024-46754-2 Wang J., Sidharth S., Zeng S., Jiang Y., Chan Y., Lyu Z., McCubbin T., Mertz R., Sharp R., and Joshi T., 2022, Bioinformatics for plant and agricultural discoveries in the age of multiomics: a review and case study of maize nodal root growth under water deficit, Physiologia Plantarum, 174(2): e13672. https://doi.org/10.1111/ppl.13672 Wang X., Li Z., Zhang Y., and Zhou X., 2023, Genotype-specific responses to drought in rice: insights from integrative omics analysis, Plant Cell & Environment, 46(3): 516-532. Wei H., Feng F., Lou Q., Xia H., Ma X., Liu Y., Xu K., Yu X., Mei H., and Luo L., 2016, Genetic determination of the enhanced drought resistance of rice maintainer HuHan2B by pedigree breeding, Scientific Reports, 6: 37302. https://doi.org/10.1038/srep37302 Wilkins O., Hafemeister C., Plessis A., Holloway-Phillips M., Pham G., Nicotra A., Gregorio G., Jagadish S., Septiningsih E., Bonneau R., and Purugganan M., 2016, Environmental gene regulatory influence networks in rice (Oryza sativa): response to water deficit high temperature and agricultural environments, The Plant Cell, 28(10): 2365-2384. https://doi.org/10.1105/tpc.16.00158 Xiong H., Yu J., Miao J., Li J., Zhang H., Wang X., Liu P., Zhao Y., Jiang C., Yin Z., Li Y., Guo Y., Fu B., Wang W., Li Z., Ali J., and Li Z., 2018, Natural variation in OsLG3 increases drought tolerance in rice by inducing ROS scavenging, Plant Physiology, 178(1): 451-467. https://doi.org/10.1104/pp.17.01492 Xu G., Zhang L., Wang H., Liu X., Chen X ., and Li Z., 2019, Genome-wide identification and expression analysis of ABA signaling pathway-related genes in rice under drought stress, Frontiers in Plant Science, 10: 1165. Xu Z., Chen M., Li Z., Ma Y., Zhang H., Huang J., and Xiong L., 2016, Systems analysis of cis-regulatory motifs in C4 photosynthesis genes using maize and rice leaf transcriptomic data during a process of de-etiolation, Journal of Experimental Botany, 67(17): 5105-5117 https://doi.org/10.1093/jxb/erw275 Yang Y., Saand M., Huang L., Abdelaal W., Zhang J., Wu Y., Li J., Sirohi M., and Wang F., 2021, Applications of multi-omics technologies for crop improvement, Frontiers in Plant Science, 12: 563953. https://doi.org/10.3389/fpls.2021.563953 Yoshida T., Ichihashi Y., and Yamaguchi-Shinozaki K., 2014, The AP2/ERF family transcription factors in plant stress responses, Current Opinion in Plant Biology, 21: 94-100. https://doi.org/10.1016/j.pbi.2014.07.009 Yin M., Ma H., Wang M., Chu G., Liu Y., Xu C., Zhang X., Wang D., and Chen S., 2021, Transcriptome analysis of flowering regulation by sowing date in japonica rice Oryza sativa L, Scientific Reports, 11: 15026. https://doi.org/10.1038/s41598-021-94552-3 Yoo Y., Chandran A., Park J., Gho Y., Lee S., An G., and Jung K., 2017, OsPhyB-mediating novel regulatory pathway for drought tolerance in rice root identified by a global RNA-Seq transcriptome analysis of rice genes in response to water deficiencies, Frontiers in Plant Science, 8: 580. https://doi.org/10.3389/fpls.2017.00580
RkJQdWJsaXNoZXIy MjQ4ODYzNA==