Molecular Plant Breeding 2025, Vol.16, No.2, 105-118 http://genbreedpublisher.com/index.php/mpb 116 Favreau B., Gaal C., Lima I., Droc G., Roques S., Sotillo A., Guérard F., Cantonny V., Gakière B., Leclercq J., Lafarge T., and Raissac M., 2023, A multi-level approach reveals key physiological and molecular traits in the response of two rice genotypes subjected to water deficit at the reproductive stage, Plant-Environment Interactions, 4(5): 229-257. https://doi.org/10.1002/pei3.10121 Gaballah M., Metwally A., Skalický M., Hassan M., Brestič M., Sabagh A., and Fayed A., 2020, Genetic diversity of selected rice genotypes under water stress conditions, Plants, 10(1): 27. https://doi.org/10.3390/plants10010027 Hadiarto T., and Tran L., 2011, Progress studies of drought-responsive genes in rice, Plant Cell Reports, 30: 297-310. https://doi.org/10.1007/s00299-010-0956-z Hao Z., Ma S., Liang L., Feng T., Xiong M., Lian S., Zhu J., Chen Y., Meng L., and Li M., 2022, Candidate genes and pathways in rice co-responding to drought and salt identified by gchap network, International Journal of Molecular Sciences, 23(7): 4016. https://doi.org/10.3390/ijms23074016 Hoang G., Dinh L., Nguyen T., Ta N., Gathignol F., Mai C., Jouannic S., Tran K., Khuat T., Do V., Lebrun M., Courtois B., and Gantet P., 2019, Genome-wide association study of a panel of vietnamese rice landraces reveals new QTLs for tolerance to water deficit during the vegetative phase, Rice, 12: 4. https://doi.org/10.1186/s12284-018-0258-6 Hong Y., Zhang H., Huang L., Li D., and Song F., 2016, Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice, Frontiers in Plant Science, 7: 4. https://doi.org/10.3389/fpls.2016.00004 Kim H., Osti N., and Triplett B., 2015, Epigenetic regulation of plant gene expression in response to environmental stress, Plant Physiology, 169(2): 323-337. Kim S., Lee J., Bae H., Kim J., Son B., Kim S., Baek S., Shin S., and Jeon W., 2019, Physiological and proteomic analyses of Korean F1 maize (Zeamays L.) hybrids under water-deficit stress during flowering, Applied Biological Chemistry, 62: 32. https://doi.org/10.1186/s13765-019-0438-0 Kumar N., Mishra B.K., Liu J., Mohan B., Thingujam D., Pajerowska-Mukhtar K.M., Mukhtar M.S., 2023, Network biology analyses and dynamic modeling of gene regulatory networks under drought stress reveal major transcriptional regulators in Arabidopsis, International Journal of Molecular Sciences, 24(8): 7349. https://doi.org/10.3390/ijms24087349 Lata C., and Prasa M.N.V., 2011, Dehydration-responsive element-binding proteins: a family of transcription factors involved in plant stress responses, Plant Signaling & Behavior, 6(11): 1865-1868. Li Z., Zhang Y., and Wang H., 2022, Genomic insights into drought response mechanisms in super rice variety “Jin You”, Frontiers in Plant Science, 13: 843. Liu H., Able A., and Able J., 2020, Multi-omics analysis of small RNA transcriptome and degradome in T. turgidum- regulatory networks of grain development and abiotic stress response, International Journal of Molecular Sciences, 21(20): 7772. https://doi.org/10.3390/ijms21207772 Liu J., Wang H., Zhang Y., Chen X., and Zhou X., 2019, WRKY46 positively regulates drought resistance in Arabidopsis by activating antioxidant enzyme genes, Journal of Experimental Botany, 70(10): 2595-2608. Marcon C., Paschold A., Malik W., Lithio A., Baldauf J., Altrogge L., Opitz N., Lanz C., Schoof H., Nettleton D., Piepho H., and Hochholdinger F., 2016, Stability of single-parent gene expression complementation in maize hybrids upon water deficit stress, Plant Physiology, 173: 1247-1257. https://doi.org/10.1104/pp.16.01045 Mittler R., 2002, Oxidative stress, antioxidants and stress tolerance, Trends in Plant Science, 7(9): 405-410 https://doi.org/10.1016/S1360-1385(02)02312-9 McDaniel E., Wahl S., Ishii S., Pinto A., Ziels R., Nielsen P., McMahon K., and Williams R., 2021, Prospects for multi-omics in the microbial ecology of water engineering, Water Research, 205: 117608. https://doi.org/10.1016/j.watres.2021.117608 Park S., Lee S., Yoo S., Kim Y., Jeon J., Park Y., and Seo M., 2009, Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of start proteins, Science, 324(5930): 1068-1071. https://doi.org/10.1126/science.1173041 Ray S., Dansana P., Giri J., Deveshwar P., Arora R., Agarwal P., Khurana J., Kapoor S., and Tyagi A., 2021, Modulation of transcription factor and metabolic pathway genes in response to water-deficit stress in rice, Functional and Integrative Genomics, 11: 157-178. https://doi.org/10.1007/s10142-010-0187-y Sakran R., Ghazy M., Rehan M., Alsohim A., and Mansour E., 2022, Molecular genetic diversity and combining ability for some physiological and agronomic traits in rice under well-watered and water-deficit conditions, Plants, 11(5): 702. https://doi.org/10.3390/plants11050702 Seeve C., Cho I., Hearne L., Srivastava G., Joshi T., Smith D., Sharp R., and Oliver M., 2017, Water-deficit-induced changes in transcription factor expression in maize seedlings, Plant Cell and Environment, 40(5): 686-701. https://doi.org/10.1111/pce.12891 Silva A., Silva C., Rosa V., Santos M., Kuki K., Dal-Bianco M., Bueno R., Oliveira J., Brito D., Costa A., and Ribeiro C., 2022, Metabolic adjustment and regulation of gene expression are essential for increased resistance to severe water deficit and resilience post-stress in soybean, PeerJ, 10: e13118. https://doi.org/10.7717/peerj.13118
RkJQdWJsaXNoZXIy MjQ4ODYzNA==