MPB_2025v16n1

Molecular Plant Breeding 2025, Vol.16, No.1, 82-92 http://genbreedpublisher.com/index.php/mpb 92 Wang H.P., and Li H.M., 2024, Application of molecular marker assisted selection in wheat stress resistance breeding, Triticeae Genomics and Genetics, 15(1): 1-9. Yadav M., Choudhary M., Singh J., Lal M., Jha P., Udawat P., Gupta N., Rajput V., Garg N., Maheshwari C., Hasan M., Gupta S., Jatwa T., Kumar R., Yadav A., and Prasad P., 2022, Impacts, tolerance, adaptation, and mitigation of heat stress on wheat under changing climates, International Journal of Molecular Sciences, 23(5): 2838. https://doi.org/10.3390/ijms23052838 Yang J., Sears R., Gill B., and Paulsen G., 2002, Quantitative and molecular characterization of heat tolerance in hexaploid wheat, Euphytica, 126: 275-282. https://doi.org/10.1023/A:1016350509689 Zhang R., Liu G., Xu H., Lou H., Zhai S., Chen A., Hao S., Xing J., Liu J., You M., Zhang Y., Xie C., Ma J., Liang R., Sun Q., Zhai H., Ni Z., and Li B., 2022, Heat Stress Tolerance 2 confers basal heat stress tolerance in allohexaploid wheat (Triticum aestivum L.), Journal of Experimental Botany, 73(19): 6600-6614. https://doi.org/10.1093/jxb/erac297

RkJQdWJsaXNoZXIy MjQ4ODYzNA==