Molecular Plant Breeding 2025, Vol.16, No.1, 82-92 http://genbreedpublisher.com/index.php/mpb 91 Khan I., Wu J., and Sajjad M., 2022b, Pollen viability-based heat susceptibility index (HSIpv): a useful selection criterion for heat-tolerant genotypes in wheat, Frontiers in Plant Science, 13: 1064569. https://doi.org/10.3389/fpls.2022.1064569 Kumar H., Chugh V., Kumar M., Gupta V., Prasad S., Kumar S., Singh C., Kumar R., Singh B., Panwar G., and Kumar M., 2023, Investigating the impact of terminal heat stress on contrasting wheat cultivars: a comprehensive analysis of phenological, physiological, and biochemical traits, Frontiers in Plant Science, 14: 1189005. https://doi.org/10.3389/fpls.2023.1189005 Lal M., Tiwari R., Gahlaut V., Mangal V., Kumar A., Singh M., Paul V., Kumar S., Singh B., and Zinta G., 2021, Physiological and molecular insights on wheat responses to heat stress, Plant Cell Reports, 41: 501-518. https://doi.org/10.1007/s00299-021-02784-4 Langridge P., and Reynolds M., 2021, Breeding for drought and heat tolerance in wheat, Theoretical and Applied Genetics, 134: 1753-1769. https://doi.org/10.1007/s00122-021-03795-1 Lu L., Liu H., Wu Y., and Yan G., 2022, Identification and Validation of a chromosome 4D quantitative trait locus hotspot conferring heat tolerance in common wheat (Triticum aestivumL.), Plants, 11(6): 729. https://doi.org/10.3390/plants11060729 Lu L., Liu H., Wu Y., and Yan G., 2020, Development and characterization of near-isogenic lines revealing candidate genes for a major 7AL QTL responsible for heat tolerance in wheat, Frontiers in Plant Science, 11: 1316. https://doi.org/10.3389/fpls.2020.01316 Machado J., Souza M., Oliveira D., Cargnin A., Pimentel A., and Assis J., 2010, Recurrent selection as breeding strategy for heat tolerance in wheat, Crop Breeding and Applied Biotechnology, 10: 9-15. Ni Z., Li H., Zhao Y., Peng H., Hu Z., Xin M., and Sun Q., 2017, Genetic improvement of heat tolerance in wheat: recent progress in understanding the underlying molecular mechanisms, Crop Journal, 6: 32-41. https://doi.org/10.1016/j.cj.2017.09.005 Paliwal R., Paliwal R., Röder M., Kumar U., Kumar U., Srivastava J., Joshi A., and Joshi A., 2012, QTL mapping of terminal heat tolerance in hexaploid wheat (T. aestivumL.), Theoretical and Applied Genetics, 125: 561-575. https://doi.org/10.1007/s00122-012-1853-3 Paux E., Lafarge S., Balfourier F., Derory J., Charmet G., Alaux M., Perchet G., Bondoux M., Baret F., Barillot R., Ravel C., Sourdille P., Gouis J., and Consortium O., 2022, Breeding for economically and environmentally sustainable wheat varieties: an integrated approach from genomics to selection, Biology, 11(1): 149. https://doi.org/10.3390/biology11010149 Qin D., Wu H., Peng H., Yao Y., Ni Z., Li Z., Zhou C., and Sun Q., 2008, Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivumL.) by using Wheat Genome Array, BMC Genomics, 9: 432. https://doi.org/10.1186/1471-2164-9-432 Raveendran S., Upadhyay D., Gajghate R., Shashikumara P., Chouhan D., Singh S., Sunilkumar V.P., Manu B., Sinha N., Singh S., and Jain N., 2020, QTL mapping for heat tolerance related traits using backcross inbred lines in wheat (Triticum aestivumL.), Indian Journal of Genetics and Plant Breeding, 80(3): 242-249. Raza A., 2020, Metabolomics: a systems biology approach for enhancing heat stress tolerance in plants, Plant Cell Reports, 41: 741-763. https://doi.org/10.1007/s00299-020-02635-8 Reynolds M., Singh R., Ibrahim A., Ageeb O., Larqué-Saavedra A., and Quick J., 2004, Evaluating physiological traits to complement empirical selection for wheat in warm environments, Euphytica, 100: 85-94. https://doi.org/10.1023/A:1018355906553 Sharma D., Torp A., Rosenqvist E., Ottosen C., and Andersen S., 2017, QTLs and potential candidate genes for heat stress tolerance identified from the mapping populations specifically segregating for Fv/Fm in wheat, Frontiers in Plant Science, 8: 1668. https://doi.org/10.3389/fpls.2017.01668 Sharma P., Mehta G., Shefali, Muthusamy S., Singh S., and Singh G., 2021, Development and validation of heat-responsive candidate gene and miRNA gene based SSR markers to analysis genetic diversity in wheat for heat tolerance breeding, Molecular Biology Reports, 48: 381-393. https://doi.org/10.1007/s11033-020-06059-1 Song L., Wang R., Yang X., Zhang A., and Liu D., 2023, Molecular markers and their applications in marker-assisted selection (MAS) in bread wheat (Triticum aestivumL.), Agriculture, 13(3): 642. https://doi.org/10.3390/agriculture13030642 Tao J., and Han J.Q., 2024, Physiological mechanisms of photosynthesis and antioxidant system in rice under high temperature stress, Rice Genomics and Genetics, 15(1): 36-47. Tricker P., ElHabti A., Schmidt J., and Fleury D., 2018, The physiological and genetic basis of combined drought and heat tolerance in wheat, Journal of Experimental Botany, 69: 3195-3210. https://doi.org/10.1093/jxb/ery081 Ullah S., Randhawa I., and Trethowan R., 2021, Genome-wide association study of multiple traits linked to heat tolerance in emmer-derived hexaploid wheat genotypes, Molecular Breeding, 41: 29. https://doi.org/10.1007/s11032-021-01222-3
RkJQdWJsaXNoZXIy MjQ4ODYzNA==