Molecular Plant Breeding 2025, Vol.16, No.1, 82-92 http://genbreedpublisher.com/index.php/mpb 90 Funding This work was supported by the Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding (2021C02064-3-4). Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Abdelrahman M., Burritt D., Gupta A., Tsujimoto H., and Tran L., 2020, Heat stress effect on source-sink relationships and metabolome dynamics in wheat, Journal of Experimental Botany, 71(2): 543-554. https://doi.org/10.1093/jxb/erz296 Al-ashkar I., Alotaibi M., Refay Y., Ghazy A., Zakri A., and Al-Doss A., 2020, Selection criteria for high-yielding and early-flowering bread wheat hybrids under heat stress, PLoS One, 15(8): e0236351. https://doi.org/10.1371/journal.pone.0236351 Al-ashkar I., Sallam M., Ghazy A., Ibrahim A., Alotaibi M., Ullah N., and Al-Doss A., 2023, Agro-physiological indices and multidimensional analyses for detecting heat tolerance in wheat genotypes, Agronomy, 13(1): 154. https://doi.org/10.3390/agronomy13010154 Bellundagi A., Ramya K., Krishna H., Jain N., Shashikumara P., Singh P., Singh G., and Prabhu K., 2022, Marker-assisted backcross breeding for heat tolerance in bread wheat (Triticum aestivumL.), Frontiers in Genetics, 13: 1056783. https://doi.org/10.3389/fgene.2022.1056783 Bergkamp B., Impa S., Asebedo A., Fritz A., and Jagadish S., 2018, Prominent winter wheat varieties response to post-flowering heat stress under controlled chambers and field based heat tents, Field Crops Research, 222: 143-152. https://doi.org/10.1016/j.fcr.2018.03.009 Budhlakoti N., Kushwaha A., Rai A., Chaturvedi K., Kumar A., Pradhan A., Kumar U., Kumar R., Juliana P., Mishra D., and Kumar S., 2022, Genomic selection: a tool for accelerating the efficiency of molecular breeding for development of climate-resilient crops, Frontiers in Genetics, 13: 832153. https://doi.org/10.3389/fgene.2022.832153 Chatterjee A., Sen P., Chattopadhyay T., Maji A., Gorai S., Sarkar A., and Ali M., 2023, Omics for elucidating heat stress tolerance mechanisms in wheat: a review update, Current Agriculture Research Journal, 11(2): 362-379. https://doi.org/10.12944/carj.11.2.02 Coast O., Posch B., Rognoni B., Bramley H., Gaju O., Mackenzie J., Pickles C., Kelly A., Lu M., Ruan Y., Trethowan R., and Atkin O., 2022, Wheat photosystem II heat tolerance: Evidence for genotype-by-environment interactions, The Plant Journal, 111(5): 1368-1382. https://doi.org/10.1111/tpj.15894 Driedonks N., Rieu I., and Vriezen W., 2016, Breeding for plant heat tolerance at vegetative and reproductive stages, Plant Reproduction, 29: 67-79. https://doi.org/10.1007/s00497-016-0275-9 Farooq M., Bramley H., Palta J., and Siddique K., 2011, Heat stress in wheat during reproductive and grain-filling phases, Critical Reviews in Plant Sciences, 30: 491-507. https://doi.org/10.1080/07352689.2011.615687 Farhad M., Kumar U., Tomar V., Bhati P., Krishnan J.N., Mustarin K.E., Bárek V., Brestič M., and Hossain A., 2023, Heat stress in wheat: a global challenge to feed billions in the current era of the changing climate, Frontiers in Sustainable Food Systems, 7: 1203721. https://doi.org/10.3389/fsufs.2023.1203721 Fu J., Bowden R., Jagadish S., and Prasad P., 2023, Genetic variation for terminal heat stress tolerance in winter wheat, Frontiers in Plant Science, 14: 1132108. https://doi.org/10.3389/fpls.2023.1132108 Gourdji S., Mathews K., Reynolds M., Crossa J., and Lobell D., 2013, An assessment of wheat yield sensitivity and breeding gains in hot environments, Proceedings of the Royal Society B: Biological Sciences, 280(1752): 20122190. https://doi.org/10.1098/rspb.2012.2190 Gupta P., Langridge P., and Mir R., 2010, Marker-assisted wheat breeding: present status and future possibilities, Molecular Breeding, 26: 145-161. https://doi.org/10.1007/s11032-009-9359-7 He J., Zhao X., Laroche A., Lu Z., Liu H., and Li Z., 2014, Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding, Frontiers in Plant Science, 5: 484. https://doi.org/10.3389/fpls.2014.00484 Kamara M., Ibrahim K., Mansour E., Kheir A., Germoush M., El-Moneim D., Motawei M., Alhusays A., Farid M., and Rehan M., 2021, Combining ability and gene action controlling grain yield and its related traits in bread wheat under heat stress and normal conditions, Agronomy, 11(8): 1450. https://doi.org/10.3390/agronomy11081450 Khan M., Kainat Z., Maqbool S., Mehwish A., Ahmad S., Suleman H., Mahmood Z., Ali M., Aziz A., Rasheed A., and Li H., 2022a, Genome-wide association for heat tolerance at seedling stage in historical spring wheat cultivars, Frontiers in Plant Science, 13: 972481. https://doi.org/10.3389/fpls.2022.972481
RkJQdWJsaXNoZXIy MjQ4ODYzNA==