MPB_2025v16n1

Molecular Plant Breeding 2025, Vol.16, No.1, 73-81 http://genbreedpublisher.com/index.php/mpb 81 Saidi A., and Hajibarat Z., 2020, Application of next generation sequencing, GWAS, RNA seq, WGRS, for genetic improvement of potato (Solanum tuberosum L.) under drought stress, Biocatalysis and Agricultural Biotechnology, 29: 101801. https://doi.org/10.1016/j.bcab.2020.101801 Sapakhova Z., Raissova N., Daurov D., Zhapar K., Daurova A., Zhigailov A., Zhambakin K., and Shamekova M., 2023, Sweet potato as a key crop for food security under the conditions of global climate change: a review, Plants, 12(13): 2516. https://doi.org/10.3390/plants12132516 Selamat N., and Nadarajah K., 2021, Meta-analysis of quantitative traits loci (QTL) identified in drought response in rice (Oryza sativa L.), Plants, 10(4): 716. https://doi.org/10.3390/plants10040716 Sprenger H., Erban A., Seddig S., Rudack K., Thalhammer A., Le M., Walther D., Zuther E., Köhl K., Kopka J., and Hincha D., 2017, Metabolite and transcript markers for the prediction of potato drought tolerance, Plant Biotechnology Journal, 16: 939-950. https://doi.org/10.1111/pbi.12840 Sprenger H., Rudack K., Schudoma C., Neumann A., Seddig S., Peters R., Zuther E., Kopka J., Hincha D., Walther D., and Koehl K., 2015, Assessment of drought tolerance and its potential yield penalty in potato, Functional Plant Biology, 42(7): 655-667. https://doi.org/10.1071/FP15013 Sun S., Li X., Gao S., Nie N., Zhang H., Yang Y., He S., Liu Q., and Zhai H., 2022, A novel WRKY transcription factor fromIpomoea trifida, ItfWRKY70, confers drought tolerance in sweet potato, International Journal of Molecular Sciences, 23(2): 686. https://doi.org/10.3390/ijms23020686 Tu W., Li J., Dong J., Wu J., Wang H., Zuo Y., Cai X., and Song B., 2023, Molecular marker-assisted selection for frost tolerance in a diallel population of potato, Cells, 12(9): 1226. https://doi.org/10.3390/cells12091226 Wang R.R., Wang L., and Zhao D.G., 2024, Integrating QTL mapping and genomic selection in Eucommia ulmoides breeding, Molecular Plant Breeding, 15(5): 247-258. https://doi.org/10.5376/mpb.2024.15.0024 Wang Y.F., and Zhang L.M., 2024, Gene-driven future: breakthroughs and applications of marker-assisted selection in tree breeding, Molecular Plant Breeding, 15(3): 132-143. https://doi.org/10.5376/mpb.2024.15.0014 Wyrzykowska A., Bielewicz D., Plewka P., Sołtys-Kalina D., Wasilewicz-Flis I., Marczewski W., Jarmolowski A., and Szweykowska-Kulińska Z., 2021, The MYB33, MYB65, and MYB101 transcription factors affect Arabidopsis and potato responses to drought by regulating the ABA signaling pathway, Physiologia Plantarum, 174(5): e13775. https://doi.org/10.1111/ppl.13775 Xue L., Wei Z., Zhai H., Xing S., Wang Y., He S., Gao S., Zhao N., Zhang H., and Liu Q., 2022, The IbPYL8-IbbHLH66-IbbHLH118 complex mediates the abscisic acid-dependent drought response in sweet potato, The New Phytologist, 236(6): 2151-2171. https://doi.org/10.1111/nph.18502 Yamakawa H., Haque E., Tanaka M., Takagi H., Asano K., Shimosaka E., Akai K., Okamoto S., Katayama K., and Tamiya S., 2021, Polyploid QTL‐seq towards rapid development of tightly linked DNA markers for potato and sweetpotato breeding through whole‐genome resequencing, Plant Biotechnology Journal, 19: 2040-2051. https://doi.org/10.1111/pbi.13633 You C., Li C., Ma M., Tang W., Kou M., Yan H., Song W., Gao R., Wang X., Zhang Y., and Li Q., 2022, A C2-domain abscisic acid-related gene, IbCAR1, positively enhances salt tolerance in sweet potato (Ipomoea batatas (L.) Lam.), International Journal of Molecular Sciences, 23(17): 9680. https://doi.org/10.3390/ijms23179680 Zhai H., Wang F., Si Z., Huo J., Xing L., An Y., He S., and Liu Q., 2016, Amyo-inositol-1-phosphate synthase gene, IbMIPS1, enhances salt and drought tolerance and stem nematode resistance in transgenic sweet potato, Plant Biotechnology Journal, 14(2): 592-602. https://doi.org/10.1111/pbi.12402

RkJQdWJsaXNoZXIy MjQ4ODYzNA==