MPB_2025v16n1

Molecular Plant Breeding 2025, Vol.16, No.1, 73-81 http://genbreedpublisher.com/index.php/mpb 80 References Alvarez-Morezuelas A., Barandalla L., Ritter E., and Galarreta J., 2023, Genome-wide association study of agronomic and physiological traits related to drought tolerance in potato, Plants, 12(4): 734. https://doi.org/10.3390/plants12040734 Aslam M., Waseem M., Jakada B., Okal E., Lei Z., Saqib H., Yuan W., Xu W., and Zhang Q., 2022, Mechanisms of abscisic acid-mediated drought stress responses in plants, International Journal of Molecular Sciences, 23(3): 1084. https://doi.org/10.3390/ijms23031084 Beketova M., Chalaya N., Zoteyeva N., Gurina A., Kuznetsova M., Armstrong M., Hein I., Drobyazina P., Khavkin E., and Rogozina Е., 2021, Combination breeding and marker-assisted selection to develop late blight resistant potato cultivars, Agronomy, 10(9): 1255. https://doi.org/10.3390/agronomy10091255 Bhat J., Deshmukh R., Zhao T., Patil G., Deokar A., Shinde S., and Chaudhary J., 2020, Harnessing high-throughput phenotyping and genotyping for enhanced drought tolerance in crop plants, Journal of Biotechnology, 324: 248-260. https://doi.org/10.1016/j.jbiotec.2020.11.010 Gervais T., Creelman A., Li X., Bizimungu B., Koeyer D., and Dahal K., 2021, Potato response to drought stress: physiological and growth basis, Frontiers in Plant Science, 12: 698060. https://doi.org/10.3389/fpls.2021.698060 Halladakeri P., Gudi S., Akhtar S., Singh G., Saini D., Hilli H., Sakure A., Macwana S., and Mir R., 2023, Meta‐analysis of the quantitative trait loci associated with agronomic traits, fertility restoration, disease resistance, and seed quality traits in pigeonpea (Cajanus cajan L.), The Plant Genome, 16(3): e20342. https://doi.org/10.1002/tpg2.20342 Hasan N., Choudhary S., Naaz N., Sharma N., and Laskar R., 2021, Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes, Journal of Genetic Engineering & Biotechnology, 19(1): 128. https://doi.org/10.1186/s43141-021-00231-1 Lau K., Herrera M., Crisovan E., Wu S., Fei Z., Khan M., Buell C., and Gemenet D., 2018, Transcriptomic analysis of sweet potato under dehydration stress identifies candidate genes for drought tolerance, Plant Direct, 2(10): e00092. https://doi.org/10.1002/PLD3.92 Lee D., Kim H., Jang G., Chung P., Jeong J., Kim Y., Bang S., Jung H., Choi Y., and Kim J., 2015, The NF-YA transcription factor OsNF-YA7 confers drought stress tolerance of rice in an abscisic acid independent manner, Plant Science, 241: 199-210. https://doi.org/10.1016/j.plantsci.2015.10.006 Liu E., Xu L., Luo Z., Li Z., Zhou G., Gao H., Fang F., Tang J., Zhao Y., Zhou Z., and Jin P., 2023, Transcriptomic analysis reveals mechanisms for the different drought tolerance of sweet potatoes, Frontiers in Plant Science, 14: 1136709. https://doi.org/10.3389/fpls.2023.1136709 Moon K., Ahn D., Park J., Jung W., Cho H., Kim H., Jeon J., Park Y., and Kim H., 2018, Transcriptome profiling and characterization of drought-tolerant potato plant (Solanum tuberosumL.), Molecules and Cells, 41: 979-992. https://doi.org/10.14348/molcells.2018.0312 Obidiegwu J., Bryan G., Jones H., and Prashar A., 2015, Coping with drought: stress and adaptive responses in potato and perspectives for improvement, Frontiers in Plant Science, 6: 542. https://doi.org/10.3389/fpls.2015.00542 Ponce O., Torres Y., Prashar A., Buell R., Lozano R., Orjeda G., and Compton L., 2022, Transcriptome profiling shows a rapid variety-specific response in two Andigenum potato varieties under drought stress, Frontiers in Plant Science, 13: 1003907. https://doi.org/10.3389/fpls.2022.1003907 Qin J., Bian C., Liu J., Zhang J., and Jin L., 2019, An efficient greenhouse method to screen potato genotypes for drought tolerance, Scientia Horticulturae, 253: 61-69. https://doi.org/10.1016/j.scienta.2019.04.017 Qin T., Sun C., Kazim A., Cui S., Wang Y., Richard D., Yao P., Bi Z., Liu Y., and Bai J., 2022, Comparative transcriptome analysis of deep-rooting and shallow-rooting potato (Solanum tuberosumL.) genotypes under drought stress, Plants, 11(15): 2024. https://doi.org/10.3390/plants11152024 Raj S., and Nadarajah K., 2022, QTL and candidate genes: techniques and advancement in abiotic stress resistance breeding of major cereals, International Journal of Molecular Sciences, 24(1): 6. https://doi.org/10.3390/ijms24010006 Ramayya P., Vinukonda V., Singh U., Alam S., Venkateshwarlu C., Vipparla A., Dixit S., Yadav S., Abbai R., Badri J., Ram T., Padmakumari A., Singh V., and Kumar A., 2021, Marker-assisted forward and backcross breeding for improvement of elite Indian rice variety Naveen for multiple biotic and abiotic stress tolerance, PLoS One, 16(9): e0256721. https://doi.org/10.1371/journal.pone.0256721 Rosero A., Granda L., Berdugo-Cely J., Šamajová O., Šamaj J., and Cerkal R., 2020, A dual strategy of breeding for drought tolerance and introducing drought-tolerant, underutilized crops into production systems to enhance their resilience to water deficiency, Plants, 9(10): 1263. https://doi.org/10.3390/plants9101263

RkJQdWJsaXNoZXIy MjQ4ODYzNA==