MPB_2025v16n1

Molecular Plant Breeding 2025, Vol.16, No.1, 63-72 http://genbreedpublisher.com/index.php/mpb 71 Joshi R., Bharat S., and Mishra R., 2020, Engineering drought tolerance in plants through CRISPR/Cas genome editing, 3 Biotech, 10: 400. https://doi.org/10.1007/s13205-020-02390-3 Kar S., Choudhury S., and Chakraborty A., 2022, CRISPR/Cas9 for soybean improvement: a review, Asia Pacific Journal of Molecular Biology and Biotechnology, 30: 40-56. https://doi.org/10.35118/apjmbb.2022.030.3.05 Kumar M., Prusty M., Pandey M., Singh P., Bohra A., Guo B., and Varshney R., 2023, Application of CRISPR/Cas9-mediated gene editing for abiotic stress management in crop plants, Frontiers in Plant Science, 14: 1157678. https://doi.org/10.3389/fpls.2023.1157678 Li B., Liu Y., Cui X., Fu J., Zhou Y., Zheng W., Lan J., Jin L., Chen M., Ma Y., Xu Z., and Min D., 2019, Genome-wide characterization and expression analysis of soybean TGA transcription factors identified a novel TGA gene involved in drought and salt tolerance, Frontiers in Plant Science, 10: 549. https://doi.org/10.3389/fpls.2019.00549 Manavalan L., Guttikonda S., Tran L., and Nguyen H., 2009, Physiological and molecular approaches to improve drought resistance in soybean, Plant & cell physiology, 50(7): 1260-1276. https://doi.org/10.1093/pcp/pcp082 Moloi M., and Merwe R., 2021, Drought tolerance responses in vegetable-type soybean involve a network of biochemical mechanisms at flowering and pod-filling stages, Plants, 10(8): 1502. https://doi.org/10.3390/plants10081502 Ozturk M., Unal B., García-Caparrós P., Khursheed A., Gul A., and Hasanuzzaman M., 2020, Osmoregulation and its actions during the drought stress in plants, Physiologia Plantarum, 172(2): 1321-1335. https://doi.org/10.1111/ppl.13297 Pathan M., Lee J., Shannon J., and Nguyen H., 2007, Recent advances in breeding for drought and salt stress tolerance in soybean, In: Jenks M.A., Hasegawa P.M., and Jain S.M. (eds.), Advances in molecular breeding toward drought and salt tolerant crops, Springer, Dordrecht, Netherlands, pp.739-773. https://doi.org/10.1007/978-1-4020-5578-2_30 Ren H., Jianan H., Wang X., Zhang B., Yu L., Gao H., Huilong H., Rujian S., Tian Y., Qi X., Liu Z., Wu X., and Qiu L., 2020, QTL mapping of drought tolerance traits in soybean with SLAF sequencing, Crop Journal, 8: 977-989. https://doi.org/10.1016/j.cj.2020.04.004 Shahriari A., Soltani Z., Tahmasebi A., and Poczai P., 2022, Integrative system biology analysis of transcriptomic responses to drought stress in soybean (Glycine max L.), Genes, 13(10): 1732. https://doi.org/10.3390/genes13101732 Sheteiwy M., AbdElgawad H., Xiong Y., Macovei A., Brestič M., Skalický M., Shaghaleh H., Hamoud Y., and El-Sawah A., 2021, Inoculation with Bacillus amyloliquefaciens and mycorrhiza confers tolerance to drought stress and improve seed yield and quality of soybean plant, Physiologia Plantarum, 172(4): 2153-2169. https://doi.org/10.1111/ppl.13454 Song S., Qu Z., Zhou X., Wang X., and Dong S., 2022, Effects of weak and strong drought conditions on physiological stability of flowering soybean, Plants, 11(20): 2708. https://doi.org/10.3390/plants11202708 Sun M., Li Y., Zheng J., Wu D., Li C., Li Z., Zang Z., Zhang Y., Fang Q., Li W., Han Y., Zhao X., and Li Y., 2022, A nuclear factor Y-B transcription factor, GmNFYB17, regulates resistance to drought stress in soybean, International Journal of Molecular Sciences, 23(13): 7242. https://doi.org/10.3390/ijms23137242 Tripathi P., Rabara R., Reese R., Miller M., Rohila J., Subramanian S., Shen Q., Morandi D., Bücking H., Shulaev V., and Rushton P., 2016, A toolbox of genes, proteins, metabolites and promoters for improving drought tolerance in soybean includes the metabolite coumestrol and stomatal development genes, BMC Genomics, 17: 102. https://doi.org/10.1186/s12864-016-2420-0 Valliyodan B., Ye H., Song L., Murphy M., Shannon J., and Nguyen H., 2016, Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans, Journal Of Experimental Botany, 68: 1835-1849. https://doi.org/10.1093/jxb/erw433 Wang X., Wu Z., Zhou Q., Wang X., Song S., and Dong S., 2022, Physiological response of soybean plants to water deficit, Frontiers in Plant Science, 12: 809692. https://doi.org/10.3389/fpls.2021.809692 Wei W., Liang D., Bian X., Shen M., Xiao J., Zhang W., Ma B., Lin Q., Lv J., Chen X., Chen S., and Zhang J., 2019, GmWRKY54 improves drought tolerance through activating genes in ABA and Ca2+ signaling pathways in transgenic soybean, The Plant Journal, 100(2): 384-398. https://doi.org/10.1111/tpj.14449 Wang H.Y., Yao X.D., Guo Y., Wang L., and Yang M.D., 2024, In-depth analysis of physiological, biochemical, and molecular bases of drought tolerance in soybeans, Legume Genomics and Genetics, 15(5): 257-269. https://doi.org/10.5376/lgg.2024.15.0025 Xuan H., Huang Y., Zhou L., Deng S., Wang C., Xu J., Wang H., Zhao J., Guo N., and Xing H., 2022, Key soybean seedlings drought-responsive genes and pathways revealed by comparative transcriptome analyses of two cultivars, International Journal of Molecular Sciences, 23(5): 2893. https://doi.org/10.3390/ijms23052893

RkJQdWJsaXNoZXIy MjQ4ODYzNA==