Molecular Plant Breeding 2025, Vol.16, No.1, 35-43 http://genbreedpublisher.com/index.php/mpb 42 Eltaher S., Hashem M., Ahmed A., Baenziger P., Börner A., and Sallam A., 2023, Effectiveness of TaDreb-B1 and 1-FEH w3 KASP markers in spring and winter wheat populations for marker-assisted selection to improve drought tolerance, International Journal of Molecular Sciences, 24(10): 8986. https://doi.org/10.3390/ijms24108986 Espindola S., Hamawaki O., Oliveira A., Hamawaki C., Hamawaki R., and Takahashi L., 2016, Selecting soybean resistant to the cyst nematode Heterodera glycines using simple sequence repeat (microssatellite) markers, Genetics and Molecular Research, 15(1): gmr.15016850. https://doi.org/10.4238/gmr.15016850 Fields J., Saxton A., Beyl C., Kopsell D., Cregan P., Hyten D., Cuvaca I., and Pantalone V., 2023, Seed protein and oil QTL in a prominent Glycine max genetic pedigree: enhancing stability for marker assisted selection, Agronomy, 13(2): 567. https://doi.org/10.3390/agronomy13020567 Francia E., Tacconi G., Crosatti C., Barabaschi D., Bulgarelli D., Dall’Aglio E., and Val G., 2005, Marker assisted selection in crop plants, Plant Cell, Tissue and Organ Culture, 82: 317-342. https://doi.org/10.1007/s11240-005-2387-z Gupta P., Langridge P., and Mir R., 2010, Marker-assisted wheat breeding: present status and future possibilities, Molecular Breeding, 26: 145-161. https://doi.org/10.1007/s11032-009-9359-7 Hasan N., Choudhary S., Naaz N., Sharma N., and Laskar R., 2021, Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes, Journal of Genetic Engineering and Biotechnology, 19(1): 128. https://doi.org/10.1186/s43141-021-00231-1 He J., Zhao X., Laroche A., Lu Z., Liu H., and Li Z., 2014, Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding, Frontiers in Plant Science, 5: 484. https://doi.org/10.3389/fpls.2014.00484 Jena K., and Mackill D., 2008, Molecular markers and their use in marker-assisted selection in rice, Crop Science, 48: 1266-1276. https://doi.org/10.2135/CROPSCI2008.02.0082 Jing Y., Wang Y.N., Feng C., and Li H.Y., 2024, Development of high-throughput molecular markers for soybean breeding, Genomics and Applied Biology, 15(5): 255-263. Kadam S., Vuong T., Qiu D., Meinhardt C., Song L., Deshmukh R., Patil G., Wan J., Valliyodan B., Scaboo A., Shannon J., and Nguyen H., 2016, Genomic-assisted phylogenetic analysis and marker development for next generation soybean cyst nematode resistance breeding, Plant Science, 242: 342-350. https://doi.org/10.1016/j.plantsci.2015.08.015 Kumawat G., Kumawat C., Chandra K., Pandey S., Chand S., Mishra U., Lenka D., and Sharma R., 2020, Insights into marker assisted selection and its applications in plant breeding, In: Abdurakhmonov I.Y. (eds.), Plant breeding - current and future views, IntechOpen, London, UK, pp.350. https://doi.org/10.5772/intechopen.95004 Li Y., Zhang C., Gao Z., Smulders M., Ma Z., Liu Z., Nan H., Chang R., and Qiu L., 2009, Development of SNP markers and haplotype analysis of the candidate gene for rhg1, which confers resistance to soybean cyst nematode in soybean, Molecular Breeding, 24: 63-76. https://doi.org/10.1007/s11032-009-9272-0 Ludwików A., Cieśla A., Arora P., Das G., Rao G., and Das R., 2015, Molecular marker assisted gene stacking for biotic and abiotic stress resistance genes in an elite rice cultivar, Frontiers in Plant Science, 6: 698. https://doi.org/10.3389/fpls.2015.00698 Maroof M., Jeong S., Gunduz I., Tucker D., Buss G., and Tolin S., 2008, Pyramiding of soybean mosaic virus resistance genes by marker‐assisted selection, Crop Science, 48: 517-526. https://doi.org/10.2135/CROPSCI2007.08.0479 Miedaner T., and Korzun V., 2012, Marker-assisted selection for disease resistance in wheat and barley breeding, Phytopathology, 102(6): 560-566. https://doi.org/10.1094/PHYTO-05-11-0157 Miklas P., Kelly J., Beebe S., and Blair M., 2006, Common bean breeding for resistance against biotic and abiotic stresses: from classical to MAS breeding, Euphytica, 147: 105-131. https://doi.org/10.1007/s10681-006-4600-5 Miller M., Song Q., and Li Z., 2023, Genomic selection of soybean (Glycine max) for genetic improvement of yield and seed composition in a breeding context, The Plant Genome, 16(4): e20384. https://doi.org/10.1002/tpg2.20384 Qin J., Wang F., Zhao Q., Shi A., Zhao T., Song Q., Ravelombola W., An H., Yan L., Yang C., and Zhang M., 2022, Identification of candidate genes and genomic selection for seed protein in soybean breeding pipeline, Frontiers in Plant Science, 13: 882732. https://doi.org/10.3389/fpls.2022.882732 Rani R., Raza G., Ashfaq H., Rizwan M., Razzaq M., Waheed M., Shimelis H., Babar A., and Arif M., 2023, Genome-wide association study of soybean (Glycine max [L.] Merr.) germplasm for dissecting the quantitative trait nucleotides and candidate genes underlying yield-related traits, Frontiers in Plant Science, 14: 1229495. https://doi.org/10.3389/fpls.2023.1229495 Ravelombola W., Qin J., Shi A., Song Q., Yuan J., Wang F., Chen P., Yan L., Feng Y., Zhao T., Meng Y., Guan K., Yang C., and Zhang M., 2021, Genome-wide association study and genomic selection for yield and related traits in soybean, PLoS One, 16(8): e0255761. https://doi.org/10.1371/journal.pone.0255761
RkJQdWJsaXNoZXIy MjQ4ODYzNA==