Molecular Plant Breeding 2025, Vol.16, No.1, 24-34 http://genbreedpublisher.com/index.php/mpb 34 Wallace J., Zhang X., Beyene Y., Semagn K., Olsen M., Prasanna B., and Buckler E., 2016, Genome-wide association for plant height and flowering time across 15 tropical maize populations under managed drought stress and well-watered conditions in sub-Saharan Africa, Crop Science, 56: 2365-2378. https://doi.org/10.2135/CROPSCI2015.10.0632 Xiao Y., Liu H., Wu L., Warburton M., and Yan J., 2017, Genome-wide association studies in maize: praise and stargaze, Molecular Plant, 10(3): 359-374. https://doi.org/10.1016/j.molp.2016.12.008 Yan J., Yang X., Shah T., Sanchez-Villeda H., Li J., Warburton M., Zhou Y., Crouch J., and Xu Y., 2010, High-throughput SNP genotyping with the GoldenGate assay in maize, Molecular Breeding, 25: 441-451. https://doi.org/10.1007/s11032-009-9343-2 Yang N., Lu Y., Yang X., Huang J., Zhou Y., Ali F., Wen W., Liu J., Li J., and Yan J., 2014, Genome wide association studies using a mew nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel, PLoS Genetics, 10(9): e1004573. https://doi.org/10.1371/journal.pgen.1004573 Yin X., Bi Y., Jiang F., Guo R., Zhang Y., Fan J., Kang M., and Fan X., 2022, Fine mapping of candidate quantitative trait loci for plant and ear height in a maize nested-association mapping population, Frontiers in Plant Science, 13: 963985. https://doi.org/10.3389/fpls.2022.963985 Yuan Y., Cairns J., Babu R., Gowda M., Makumbi D., Magorokosho C., Zhang A., Liu Y., Wang N., Hao Z., Vicente F., Olsen M., Prasanna B., Lu Y., and Zhang X., 2019, Genome-wide association mapping and genomic prediction analyses reveal the genetic architecture of grain yield and flowering time under drought and heat stress conditions in maize, Frontiers in Plant Science, 9: 1919. https://doi.org/10.3389/fpls.2018.01919 Zhang X., Guan Z., Li Z., Liu P., Ma L., Zhang Y., Pan L., He S., Zhang Y., Li P., Ge F., Zou C., He Y., Gao S., Pan G., and Shen Y., 2020, A combination of linkage mapping and GWAS brings new elements on the genetic basis of yield-related traits in maize across multiple environments, Theoretical and Applied Genetics, 133: 2881-2895. https://doi.org/10.1007/s00122-020-03639-4 Zhao Y., and Su C., 2019, Mapping quantitative trait loci for yield-related traits and predicting candidate genes for grain weight in maize, Scientific Reports, 9: 16112. https://doi.org/10.1038/s41598-019-52222-5 Zhou J., and Xu L.M., 2024, Conventional breeding vs. genetic engineering in maize: a comparative study, Maize Genomics and Genetics, 15(2): 49-59. Zhou Z., Zhang C., Zhou Y., Hao Z., Wang Z., Zeng X., Di H., Li M., Zhang D., Yong H., Zhang S., Weng J., and Li X., 2016, Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines, BMC Genomics, 17: 178. https://doi.org/10.1186/s12864-016-2555-z
RkJQdWJsaXNoZXIy MjQ4ODYzNA==