Molecular Plant Breeding 2025, Vol.16, No.1, 24-34 http://genbreedpublisher.com/index.php/mpb 33 Jones E., Chu W., Ayele M., Ho J., Bruggeman E., Yourstone K., Rafalski A., Smith O., McMullen M., Bezawada C., Warren J., Babayev J., Basu S., and Smith S., 2009, Development of single nucleotide polymorphism (SNP) markers for use in commercial maize (Zeamays L.) germplasm, Molecular Breeding, 24: 165-176. https://doi.org/10.1007/s11032-009-9281-z Karnatam K., Chhabra G., Saini D., Singh R., Kaur G., Praba U., Kumar P., Goyal S., Sharma P., Ranjan R., Sandhu S., Kumar R., and Vikal Y., 2023, Genome-wide meta-analysis of QTLs associated with root traits and implications for maize breeding, International Journal of Molecular Sciences, 24(7): 6135. https://doi.org/10.3390/ijms24076135 Ledesma A., Santana A., Ribeiro F., Aguilar F., Edwards J., Frei U., and Lübberstedt T., 2023, Genome-wide association analysis of plant architecture traits using doubled haploid lines derived from different cycles of the Iowa Stiff Stalk Synthetic maize population, Frontiers in Plant Science, 14: 1294507. https://doi.org/10.3389/fpls.2023.1294507 Liu M., Tan X., Yang Y., Liu P., Zhang X., Zhang Y., Wang L., Hu Y., Ma L., Li Z., Zhang Y., Zou C., Lin H., Gao S., Lee M., Lübberstedt T., Pan G., and Shen Y., 2019, Analysis of the genetic architecture of maize kernel size traits by combined linkage and association mapping, Plant Biotechnology Journal, 18: 207-221. https://doi.org/10.1111/pbi.13188 Longmei N., Gill G., Zaidi P., Kumar R., Nair S., Hindu V., Vinayan M., and Vikal Y., 2021, Genome wide association mapping for heat tolerance in sub-tropical maize, BMC Genomics, 22: 154. https://doi.org/10.1186/s12864-021-07463-y Mammadov J., Chen W., Ren R., Pai R., Marchione W., Yalçin F., Witsenboer H., Greene T., Thompson S., and Kumpatla S., 2010, Development of highly polymorphic SNP markers from the complexity reduced portion of maize (Zea mays L.) genome for use in marker-assisted breeding, Theoretical and Applied Genetics, 121: 577-588. https://doi.org/10.1007/s00122-010-1331-8 Moussa A., Mandozai A., Jin Y., Qu J., Zhang Q., Zhao H., Anwari G., Khalifa M., Lamboro A., Noman M., Bakasso Y., Zhang M., Guan S., and Wang P., 2021, Genome-wide association screening and verification of potential genes associated with root architectural traits in maize (Zeamays L.) at multiple seedling stages, BMC Genomics, 22: 558. https://doi.org/10.1186/s12864-021-07874-x Müller B., Filho J., Lima B., Garcia C., Missiaggia A., Aguiar A., Takahashi E., Kirst M., Gezan S., Silva-Junior O., Neves L., and Grattapaglia D., 2018, Independent and Joint-GWAS for growth traits in Eucalyptus by assembling genome-wide data for 3373 individuals across four breeding populations, The New Phytologist, 221(2): 818-833. https://doi.org/10.1111/nph.15449 Parisseaux B., and Bernardo R., 2004, In silico mapping of quantitative trait loci in maize, Theoretical and Applied Genetics, 109: 508-514. https://doi.org/10.1007/s00122-004-1666-0 Rafalski A., 2002, Applications of single nucleotide polymorphisms in crop genetics, Current Opinion in Plant Biology, 5(2): 94-100. https://doi.org/10.1016/S1369-5266(02)00240-6 Ribaut J., and Ragot M., 2006, Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives, Journal of Experimental Botany, 58(2): 351-360. https://doi.org/10.1093/JXB/ERL214 Romay M., Millard M., Glaubitz J., Peiffer J., Swarts K., Casstevens T., Elshire R., Acharya C., Mitchell S., Flint-Garcia S., McMullen M., Holland J., Buckler E., and Gardner C., 2013, Comprehensive genotyping of the USA national maize inbred seed bank, Genome Biology, 14: R55-R55. https://doi.org/10.1186/gb-2013-14-6-r55 Sethi M., Saini D., Devi V., Kaur C., Singh M., Singh J., Pruthi G., Kaur A., Singh A., and Chaudhary D., 2023, Unravelling the genetic framework associated with grain quality and yield-related traits in maize (Zeamays L.), Frontiers in Genetics, 14: 1248697. https://doi.org/10.3389/fgene.2023.1248697 Shikha K., Shahi J., Vinayan M., Zaidi P., Singh A., and Sinha B., 2021, Genome-wide association mapping in maize: status and prospects, 3 Biotech, 11: 244. https://doi.org/10.1007/s13205-021-02799-4 Sibov S., Souza C., Garcia A., Silva A., Garcia A., Mangolin C., Benchimol L., and Souza A., 2004, Molecular mapping in tropical maize (Zea mays L.) using microsatellite markers. 2. Quantitative trait loci (QTL) for grain yield, plant height, ear height and grain moisture, Hereditas, 139(2): 107-115. https://doi.org/10.1111/J.1601-5223.2003.01667.X Su C., Wang W., Gong S., Zuo J., Li S., and Xu S., 2017, High density linkage map construction and mapping of yield trait QTLs in maize (Zeamays) using the genotyping-by-sequencing (GBS) technology, Frontiers in Plant Science, 8: 706. https://doi.org/10.3389/fpls.2017.00706 Susmitha P., Kumar P., Yadav P., Sahoo S., Kaur G., Pandey M., Singh V., Tseng T., and Gangurde S., 2023, Genome-wide association study as a powerful tool for dissecting competitive traits in legumes, Frontiers in Plant Science, 14: 1123631. https://doi.org/10.3389/fpls.2023.1123631 Tomkowiak A., Bocianowski J., Spychała J., Grynia J., Sobiech A., and Kowalczewski P., 2021, DArTseq-based high-throughput SilicoDArT and SNP markers applied for association mapping of genes related to maize morphology, International Journal of Molecular Sciences, 22(11): 5840. https://doi.org/10.3390/ijms22115840
RkJQdWJsaXNoZXIy MjQ4ODYzNA==