MPB_2025v16n1

Molecular Plant Breeding 2025, Vol.16, No.1, 13-23 http://genbreedpublisher.com/index.php/mpb 23 Yang J., Zhao X., Cheng K., Du H.,Ouyang Y., Chen J., Qiu S., Huang J., Jiang Y., Jiang L., Ding J.,Wang J., Xu C., Li X., and Zhang Q., 2012, A killer-protector system regulates both hybrid sterility and segregation distortion in rice, Science, 337(6100): 1336-1340. http://dx.doi.org/10.1126/science.1223702 Zhang L., Zhu Q., Wu Z., Ross-Ibarra J., Gaut B., Ge S., and Sang T., 2009, Selection on grain shattering genes and rates of rice domestication, The New Phytologist, 184(3): 708-720. https://doi.org/10.1111/j.1469-8137.2009.02984.x Zhang W., Tan L., Sun H., Zhao X., Liu F., Cai H., Fu Y., Sun X., Gu P., Zhu Z., and Sun C., 2019, Natural variations at TIG1 encoding a TCP transcription factor contribute to plant architecture domestication in rice, Molecular Plant, 12(8): 1075-1089. Zhu Y., Ellstrand N., and Lu B., 2012, Sequence polymorphisms in wild, weedy, and cultivated rice suggest seed-shattering locus sh4 played a minor role in Asian rice domestication, Ecology and Evolution, 2(9): 2106-2113. https://doi.org/10.1002/ece3.318 Zhu Z., Tan L., Fu Y., Liu F., Cai H., Xie D., Wu F., Wu J., Matsumoto T., and Sun C., 2013, Genetic control of inforescence architecture during rice domestication, Nature Communication, 4: 2200. http://dx.doi.org/10.1038/ncomms3200

RkJQdWJsaXNoZXIy MjQ4ODYzNA==