Molecular Plant Breeding 2025, Vol.16, No.1, 13-23 http://genbreedpublisher.com/index.php/mpb 22 Hussain S., Quittner A., Brown M., and Li-Rosi A., 2020, Understanding access to genomics in an ethnically diverse south Florida population: A comparison of demographics in odyssey and rapid whole genome sequencing programs, Journal of Genetic Counseling, 29(4): 553-561. https://doi.org/10.1002/jgc4.1281 Izawa T., Konishi S., Shomura A., and Yano M., 2009, DNA changes tell us about rice domestication, Current Opinion in Plant Biology, 12(2): 185-192. https://doi.org/10.1016/j.pbi.2009.01.004 Kumar A., Daware A., Kumar A., Kumar V., Krishnan S., Mondal S., Patra B., Singh A., Tyagi A., Parida S., and Thakur J., 2020, Genome-wide analysis of polymorphisms identified domestication-associated long low diversity region carrying important rice grain size/weight QTL, The Plant Journal, 103(4): 1525-1547. https://doi.org/10.1111/tpj.14845 Lenaerts B., Collard B., and Demont M., 2018, Global survey of rice breeders to investigate characteristics and willingness to adopt alternative breeding methods, Agriculture & Food Security, 7: 40. https://doi.org/10.1186/s40066-018-0191-3 Li C.B., Zhou A.L., and Sang T., 2006, Rice domestication by reducing shattering, Science, 311(5769): 1936-1939. http://dx.doi.org/10.1126/science.1123604 Lv S., Wu W., Wang M., Meyer R., Ndjiondjop M., Tan L., Zhou H., Zhang J., Fu Y., Cai H., Sun C., Wing R., and Zhu Z., 2018, Genetic control of seed shattering during African rice domestication, Nature Plants, 4: 331-337. https://doi.org/10.1038/s41477-018-0164-3 Poncet V., Martel E., Allouis S., Devos K., Lamy F., Sarr A., and Robert T., 2002, Comparative analysis of QTLs affecting domestication traits between two domesticated × wild pearl millet (Pennisetum glaucumL., Poaceae) crosses, Theoretical and Applied Genetics, 104: 965-975. https://doi.org/10.1007/s00122-002-0889-1 Qiu J., Zhou Y., Mao L., Ye C., Wang W., Zhang J., Yu Y., Fu F., Wang Y., Qian F., Qi T., Wu S., Sultana M., Cao Y., Wang Y., Timko M., Ge S., Fan L., and Lu Y., 2017, Genomic variation associated with local adaptation of weedy rice during de-domestication, Nature Communications, 8: 15323. https://doi.org/10.1038/ncomms15323 Shomura A., Izawa T., Ebana K., Ebitani T., Kanegae H., Konishi S., and Yano M., 2008, Deletion in a gene associated with grain size increased yields during rice domestication, Nature Genetics, 40: 1023-1028. https://doi.org/10.1038/ng.169 Siegrist M., Hartmann C., and Sütterlin B., 2016, Biased perception about gene technology: how perceived naturalness and affect distort benefit perception, Appetite, 96: 509-516. https://doi.org/10.1016/j.appet.2015.10.021 Sweeney M., Thomson M., Pfeil B., and McCouch S., 2006, Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice, Plant Cell, 18: 283-294. Tang T., and Shi S., 2007, Molecular population genetics of rice domestication, Journal of Integrative Plant Biology, 49: 769-775. Vaughan D., Lu B., and Tomooka N., 2008, The evolving story of rice evolution, Plant Science, 174: 394-408. https://doi.org/10.1016/J.PLANTSCI.2008.01.016 Voss-Fels K., Qian L., Parra-Londono S., Uptmoor R., Frisch M., Keeble-Gagnère G., Appels R., and Snowdon R., 2017, Linkage drag constrains the roots of modern wheat, Plant, Cell Environment, 40(5): 717-725. https://doi.org/10.1111/pce.12888 Wang E., Wang J., Zhu X., Hao W., Wang L., Li Q., Zhang L., He W., Lu B., Lin H., Ma H., Zhang G., and He Z., 2008, Control of rice grain-filling and yield by a gene with a potential signature of domestication, Nature Genetics, 40: 1370-1374. https://doi.org/10.1038/ng.220 Wang H., Xu X., Vieira F., Xiao Y., Li Z., Wang J., Nielsen R., and Chu C., 2016, The power of Inbreeding: NGS-Based GWAS of rice reveals convergent evolution during rice domestication, Molecular Plant, 9(7): 975-985. https://doi.org/10.1016/j.molp.2016.04.018 Wang M., Li W., Fang C., Xu F., Liu Y., Wang Z., Yang R., Zhang M., Liu S., Lu S., Lin T., Tang J., Wang Y., Wang H., Lin H., Zhu B., Chen M., Kong F., Liu B., Zeng D., Jackson S., Chu C., and Tian Z., 2018, Parallel selection on a dormancy gene during domestication of crops from multiple families, Nature Genetics, 50: 1435-1441. https://doi.org/10.1038/s41588-018-0229-2 Wang Z., Guo Z., Zou T., Zhang Z., Zhang J., He P., Song R., Liu Z., Zhu H., Zhang G., and Fu X., 2023, Substitution mapping and allelic variations of the domestication genes fromO. rufipogon and O. nivara, Rice, 16: 38. http://dx.doi.org/10.1186/S12284-023-00655-Y Wei X., Chen M.,Zhang Q., Gong J., Liu J., Yong K., Wang Q., Fan J., Chen S., Hua H., Luo Z., Zhao X., Wang X., Li W., Cong J., Yu X., Wang Z., Huang R., Chen J., Zhou X., Qiu J., Xu P., Murray J., Wang H., Xu Y., Xu C., Yang J., Han B., and Huang X., 2024, Genomic investigation of 18 421 lines reveals the genetic architecture of rice, Science, 385(6704): eadm8762. http://dx.doi.org/10.1126/SCIENCE.ADM8762 Xiong L., Liu K., Dai X., Xu C., and Zhang Q., 1999, Identification of genetic factors controlling domestication-related traits of rice using an F2 population of a cross between Oryza sativaand O. rufipogon, Theoretical and Applied Genetics, 98: 243-251. https://doi.org/10.1007/s001220051064
RkJQdWJsaXNoZXIy MjQ4ODYzNA==