Molecular Plant Breeding 2025, Vol.16, No.1, 1-12 http://genbreedpublisher.com/index.php/mpb 11 Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Bo K., Ma Z., Chen J., and Weng Y., 2014, Molecular mapping reveals structural rearrangements and quantitative trait loci underlying traits with local adaptation in semi-wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis Qi et Yuan), Theoretical and Applied Genetics, 128: 25-39. https://doi.org/10.1007/s00122-014-2410-z Fazio G., Fazio G., Staub J., and Stevens M., 2003, Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines, Theoretical and Applied Genetics, 107: 864-874. https://doi.org/10.1007/s00122-003-1277-1 Gao Z., Zhang H., Cao C., Han J., Li H., and Ren Z., 2020, QTL Mapping for cucumber fruit size and shape with populations from long and round fruited inbred lines, Horticultural Plant Journal, 6: 132-144. https://doi.org/10.1016/j.hpj.2020.04.004 Halladakeri P., Gudi S., Akhtar S., Singh G., Saini D., Hilli H., Sakure A., Macwana S., and Mir R., 2023, Meta‐analysis of the quantitative trait loci associated with agronomic traits, fertility restoration, disease resistance, and seed quality traits in pigeonpea (Cajanus cajan L.), The Plant Genome, 16(3): e20342. https://doi.org/10.1002/tpg2.20342 Lee H., Kim J., Kang B., and Song K., 2020, Assessment of the genetic diversity of the breeding lines and a genome wide association study of three horticultural traits using worldwide cucumber (Cucumis spp.) germplasm collection, Agronomy, 10(11): 1736. https://doi.org/10.3390/agronomy10111736 Liu C., Liu X., Han Y., Wang X., Ding Y., Meng H., and Cheng Z., 2021, Genomic Prediction and the practical breeding of 12 quantitative-inherited traits in cucumber (Cucumis sativus L.), Frontiers in Plant Science, 12: 729328. https://doi.org/10.3389/fpls.2021.729328 Miao H., Zhang S., Wang X., Zhang Z., Li M., Mu S., Cheng Z., Zhang R., Huang S., Xie B., Fang Z., Zhang Z., Weng Y., and Gu X., 2011, A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticulturally important traits, Euphytica, 182: 167-176. https://doi.org/10.1007/s10681-011-0410-5 Nguyen K., Grondin A., Courtois B., and Gantet P., 2019, Next-generation sequencing accelerates crop gene discovery, Trends in Plant Science, 24(3): 263-274. https://doi.org/10.1016/j.tplants.2018.11.008 Pan Y., Chen B., Qiao L., Chen F., Zhao J., Cheng Z., and Weng Y., 2022, Phenotypic characterization and fine mapping of a major-effect fruit shape QTLFS5.2 in cucumber, Cucumis sativus L., with near-isogenic line-derived segregating populations, International Journal of Molecular Sciences, 23(21): 13384. https://doi.org/10.3390/ijms232113384 Pan Y., Qu S., Bo K., Gao M., Haider K., and Weng Y., 2017, QTL mapping of domestication and diversifying selection related traits in round-fruited semi-wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis), Theoretical and Applied Genetics, 130: 1531-1548. https://doi.org/10.1007/s00122-017-2908-2 Pan Y., Wen C., Han Y., Wang Y., Li Y., Li S., Cheng X., and Weng Y., 2020, QTL for horticulturally important traits associated with pleiotropic andromonoecy and carpel number loci, and a paracentric inversion in cucumber, Theoretical and Applied Genetics, 133: 2271-2290. https://doi.org/10.1007/s00122-020-03596-y Serquén F., Bacher J., and Staub J., 1997, Mapping and QTL analysis of horticultural traits in a narrow cross in cucumber (Cucumis sativus L.) using random-amplified polymorphic DNA markers, Molecular Breeding, 3: 257-268. https://doi.org/10.1023/A:1009689002015 Takagi H., Abe A., Yoshida K., Kosugi S., Natsume S., Mitsuoka C., Uemura A., Utsushi H., Tamiru M., Takuno S., Innan H., Cano L., Kamoun S., and Terauchi R., 2013, QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations, The Plant Journal, 74(1): 174-183. https://doi.org/10.1111/tpj.12105 Wang X., Li H., Gao Z., Wang L., and Ren Z., 2020a, Localization of quantitative trait loci for cucumber fruit shape by a population of chromosome segment substitution lines, Scientific Reports, 10: 11030. https://doi.org/10.1038/s41598-020-68312-8 Wang Y., Bo K., Gu X., Pan J., Li Y., Chen J., Wen C., Ren Z., Ren H., Chen X., Grumet R., and Weng Y., 2020b, Molecularly tagged genes and quantitative trait loci in cucumber with recommendations for QTL nomenclature, Horticulture Research, 7: 3. https://doi.org/10.1038/s41438-019-0226-3 Wang Y., Fang Y., Ning S., Xia L., Zhan J., Yang Z., Cheng C., Lou Q., Li J., and Chen J., 2023, QTL mapping for ovary- and fruit-related traits in Cucumis sativus-C. hystrix introgression line IL52, Genes, 14(6): 1133. https://doi.org/10.3390/genes14061133 Wei Q., Wang Y., Qin X., Zhang Y., Zhang Z., Wang J., Li J., Lou Q., and Chen J., 2014, An SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragment (SLAF) sequencing, BMC Genomics, 15: 1158. https://doi.org/10.1186/1471-2164-15-1158
RkJQdWJsaXNoZXIy MjQ4ODYzNA==