Molecular Plant Breeding 2025, Vol.16, No.1, 93-104 http://genbreedpublisher.com/index.php/mpb 104 Prasanna B., Palacios-Rojas N., Hossain F., Muthusamy V., Menkir A., Dhliwayo T., Ndhlela T., Vicente F., Nair S., Vivek B., Zhang X., Olsen M., and Fan X., 2020, Molecular breeding for nutritionally enriched maize: status and prospects, Frontiers in Genetics, 10: 1392. https://doi.org/10.3389/fgene.2019.01392 Rizzo G., Monzon J., Tenorio F., Howard R., Cassman K., and Grassini P., 2022, Climate and agronomy, not genetics, underpin recent maize yield gains in favorable environments, Proceedings of the National Academy of Sciences of the United States of America, 119(4): e2113629119. https://doi.org/10.1073/pnas.2113629119 Sarika K., Hossain F., Muthusamy V., Zunjare R., Baveja A., Goswami R., Bhat J., Saha S., and Gupta H., 2018, Marker-assisted pyramiding of opaque2 and novel opaque16 genes for further enrichment of lysine and tryptophan in sub-tropical maize, Plant Science, 272: 142-152. https://doi.org/10.1016/j.plantsci.2018.04.014 Sethi M., Saini D., Devi V., Kaur C., Singh M., Singh J., Pruthi G., Kaur A., Singh A., and Chaudhary D., 2023, Unravelling the genetic framework associated with grain quality and yield-related traits in maize (Zeamays L.), Frontiers in Genetics, 14: 1248697. https://doi.org/10.3389/fgene.2023.1248697 Sinyolo S., 2020, Technology adoption and household food security among rural households in South Africa: the role of improved maize varieties, Technology in Society, 60: 101214. https://doi.org/10.1016/j.techsoc.2019.101214 Tandzi L., Mutengwa C., Ngonkeu E., Woin N., and Gracen V., 2017, Breeding for quality protein maize (QPM) varieties: a review, Agronomy, 7(4): 80. https://doi.org/10.3390/agronomy7040080 Tang M., He X., Luo Y., Ma L., Tang X., and Huang K., 2013, Nutritional assessment of transgenic lysine-rich maize compared with conventional quality protein maize, Journal of the Science of Food and Agriculture, 93(5): 1049-1054. https://doi.org/10.1002/jsfa.5845 Vasal S., 2002, Quality protein maize: overcoming the hurdles, Journal of Crop Production, 6: 193-227. https://doi.org/10.1300/J144v06n01_11 Vikal Y., and Chawla J., 2014, Molecular interventions for enhancing the protein quality of maize, In: Chaudhary D., Kumar S., and Langyan S. (eds.), Maize: nutrition dynamics and novel uses, Springer, New Delhi, India, pp.49-61. https://doi.org/10.1007/978-81-322-1623-0_4 Wang W., Zhu S.J., and Cheng J.H., 2024, The role of mineral fertilizers in enhancing maize nutritional value, Field Crop, 7(4): 222-231. Welch R., 2002, Breeding strategies for biofortified staple plant foods to reduce micronutrient malnutrition globally, The Journal of Nutrition, 132(3): 495S-499S. https://doi.org/10.1093/JN/132.3.495S Wroblewitz S., Hüther L., Manderscheid R., Weigel H., Wätzig H., and Dänicke S., 2014, Effect of rising atmospheric carbon dioxide concentration on the protein composition of cereal grain, Journal of Agricultural and Food Chemistry, 62(28): 6616-6625. https://doi.org/10.1021/jf501958a Zabel F., Müller C., Elliott J., Minoli S., Jägermeyr J., Schneider J., Franke J., Moyer E., Dury M., François L., Folberth C., Liu W., Pugh T., Olin S., Rabin S., Mauser W., Hank T., Ruane A., and Asseng S., 2021, Large potential for crop production adaptation depends on available future varieties, Global Change Biology, 27(16): 3870-3882. https://doi.org/10.1111/gcb.15649 Zarkadas C., Yu Z., Hamilton R., Pattison P., and Rose N., 1995, Comparison between the protein quality of northern adapted cultivars of common maize and quality protein maize, Journal of Agricultural and Food Chemistry, 43: 84-93. https://doi.org/10.1021/JF00049A016 Zhou L., and Jiang L., 2024, Impact of integrated agronomic practices on maize yield and nutrient use efficiency, Field Crop, 7(2): 79-92.
RkJQdWJsaXNoZXIy MjQ4ODYzNA==