Molecular Plant Breeding 2024, Vol.15, No.6, 351-361 http://genbreedpublisher.com/index.php/mpb 360 Nascimento F., Rocha A., Soares J., Mascarenhas M., Ferreira M., Lino L., Ramos A., Diniz L., Mendes T., Ferreira C., Santos-Serejo J., and Amorim E., 2023, Gene editing for plant resistance to abiotic factors: a systematic review, Plants, 12(2): 305. https://doi.org/10.3390/plants12020305 PMid:36679018 PMCid:PMC9860801 Ngailo S., Shimelis H., Sibiya J., Mtunda K., and Mashilo J., 2019, Genotype-by-environment interaction of newly-developed sweet potato genotypes for storage root yield, yield-related traits and resistance to sweet potato virus disease, Heliyon, 5(3): e01448. https://doi.org/10.1016/j.heliyon.2019.e01448 PMid:30976707 PMCid:PMC6441836 Ngeve J., 2004, Regression analysis of genotype x environment interaction in sweet potato, Euphytica, 71: 231-238. https://doi.org/10.1007/BF00040412 Pironon S., and Gomez M., 2020, Plant agrodiversity to the rescue, Nature Climate Change, 11: 6-8. https://doi.org/10.1038/s41558-020-00925-3 Rodríguez-Bonilla L., Cuevas H., Montero-Rojas M., Bird-Picó F., Luciano-Rosario D., and Siritunga D., 2014, Assessment of genetic diversity of sweet potato in Puerto Rico, PLoS One, 9(12): e116184. https://doi.org/10.1371/journal.pone.0116184 PMid:25551388 PMCid:PMC4281141 Rosero A., Burgos-Paz W., Araujo H., Pastrana-Vargas I., Martínez R., Pérez J., and Espitia L., 2023, Sweet potato varietal selection using combined methods of multi-trait index, genetic gain and stability from multi-environmental evaluations, Horticulturae, 9(9): 974. https://doi.org/10.3390/horticulturae9090974 Sapakhova Z., Raissova N., Daurov D., Zhapar K., Daurova A., Zhigailov A., Zhambakin K., and Shamekova M., 2023, Sweet potato as a key crop for food security under the conditions of global climate change: a review, Plants, 12(13): 2516. https://doi.org/10.3390/plants12132516 PMid:37447081 PMCid:PMC10346279 Solankey S., Singh P., and Singh R., 2015, Genetic diversity and interrelationship of qualitative and quantitative traits in sweet potato, International Journal of Vegetable Science, 21: 236-248. https://doi.org/10.1080/19315260.2013.867295 Sun H., Mu T., Xi L., Zhang M., and Chen J., 2014, Sweet potato (Ipomoea batatas L.) leaves as nutritional and functional foods, Food Chemistry, 156: 380-389. https://doi.org/10.1016/j.foodchem.2014.01.079 PMid:24629984 Sun S., Li X., Gao S., Nie N., Zhang H., Yang Y., He S., Liu Q., and Zhai H., 2022, A novel WRKY transcription factor fromIpomoea trifida, ItfWRKY70, confers drought tolerance in sweet potato, International Journal of Molecular Sciences, 23(2): 686. https://doi.org/10.3390/ijms23020686 PMid:35054868 PMCid:PMC8775875 Tao X., Gu Y., Wang H., Zheng W., Li X., Zhao C., and Zhang Y., 2012, Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato [Ipomoea batatas (L.) Lam.], PLoS One, 7(4): e36234. https://doi.org/10.1371/journal.pone.0036234 PMid:22558397 PMCid:PMC3338685 Tussipkan D., and Manabayeva S., 2021, Employing CRISPR/Cas technology for the improvement of potato and other tuber crops, Frontiers in Plant Science, 12: 747476. https://doi.org/10.3389/fpls.2021.747476 PMid:34764969 PMCid:PMC8576567 Veillet F., Perrot L., Chauvin L., Kermarrec M., Guyon-Debast A., Chauvin J., Nogué F., and Mazier M., 2019, Transgene-free genome editing in tomato and potato plants using agrobacterium-mediated delivery of a CRISPR/Cas9 cytidine base editor, International Journal of Molecular Sciences, 20(2): 402. https://doi.org/10.3390/ijms20020402 PMid:30669298 PMCid:PMC6358797 Wang F., Tan W., Song W., Yang S., and Qiao S., 2021, Transcriptome analysis of sweet potato responses to potassium deficiency, BMC Genomics, 23: 655. https://doi.org/10.1186/s12864-022-08870-5 PMid:36109727 PMCid:PMC9479357 Wang H., Wu Y., Zhang Y., Yang J., Fan W., Zhang H., Zhao S., Yuan L., and Zhang P., 2019, CRISPR/Cas9-based mutagenesis of starch biosynthetic genes in sweet potato (Ipomoea batatas) for the improvement of starch quality, International Journal of Molecular Sciences, 20(19): 4702. https://doi.org/10.3390/ijms20194702 PMid:31547486 PMCid:PMC6801948 Yang Z., Zhu P., Kang H., Liu L., Cao Q., Sun J., Dong T., Zhu M., Li Z., and Xu T., 2020, High-throughput deep sequencing reveals the important role that microRNAs play in the salt response in sweet potato (Ipomoea batatas L.), BMC Genomics, 21: 164. https://doi.org/10.1186/s12864-020-6567-3 PMid:32066373 PMCid:PMC7027035
RkJQdWJsaXNoZXIy MjQ4ODYzMg==