Molecular Plant Breeding 2024, Vol.15, No.6, 340-350 http://genbreedpublisher.com/index.php/mpb 350 Sobiech A., Tomkowiak A., Nowak B., Bocianowski J., Wolko Ł., and Spychała J., 2022, Associative and physical mapping of markers related to Fusarium in maize resistance, obtained by next-generation sequencing (NGS), International Journal of Molecular Sciences, 23(11): 6105. https://doi.org/10.3390/ijms23116105 PMid:35682785 PMCid:PMC9181084 Takuno S., Terauchi R., and Innan H., 2012, The power of QTL mapping with RILs, PLoS One, 7(10): e46545. https://doi.org/10.1371/journal.pone.0046545 PMid:23056339 PMCid:PMC3467243 Wen J., Shen Y., Xing Y., Wang Z., Han S., Li S., Yang C., Hao D., and Zhang Y., 2020, QTL mapping of Fusarium ear rot resistance in maize, Plant Disease, 105(3): 558-565. https://doi.org/10.1094/PDIS-02-20-0411-RE PMid:32870108 Wu Y., Zhou Z., Dong C., Chen J., Ding J., Zhang X., Mu C., Chen Y., Li X., Li H., Han Y., Wang R., Sun X., Li J., Dai X., Song W., Chen W., and Wu J., 2020, Linkage mapping and genome-wide association study reveals conservative QTL and candidate genes for Fusarium rot resistance in maize, BMC Genomics, 21: 357. https://doi.org/10.1186/s12864-020-6733-7 PMid:32398006 PMCid:PMC7218626 Xia Y., Wang B., Zhu L., Wu W., Sun S., Zhu Z., Li X., Weng J., and Duan C., 2022, Identification of a Fusarium ear rot resistance gene in maize by QTL mapping and RNA sequencing, Frontiers in Plant Science, 13: 954546. https://doi.org/10.3389/fpls.2022.954546 PMid:36176690 PMCid:PMC9514021 Yao L., Li Y., Ma C., Du L., and Xu M., 2020, Combined genome-wide association study and transcriptome analysis reveal candidate genes for resistance to Fusarium ear rot in maize, Journal of Integrative Plant Biology, 62(10): 1535-1551. https://doi.org/10.1111/jipb.12911 PMid:31961059 Yuan G., He D., Shi J., Li Y., Yang Y., Du J., Zou C., Ma L., Gao S., Pan G., and Shen Y., 2023, Genome-wide association study discovers novel germplasm resources and genetic loci with resistance to Gibberella ear rot caused by Fusarium graminearum, Phytopathology, 113(7): 1317-1324. https://doi.org/10.1094/PHYTO-09-22-0336-R PMid:36721376 Yuan G., Li Y., He D., Shi J., Yang Y., Du J., Zou C., Ma L., Pan G., and Shen Y., 2022, A combination of QTL mapping and GradedPool-Seq to dissect genetic complexity for Gibberella ear rot resistance in maize using an IBM Syn10 DH population, Plant Disease, 107(4): 1115-1121. https://doi.org/10.1094/PDIS-05-22-1183-RE PMid:36131495 Zhang J., Shi H., Yang Y., Zeng C., Jia Z., Ma T., Wu M., Du J., Huang N., Pan G., Li Z., and Yuan G., 2023, Kernel bioassay evaluation of maize ear rot and genome-wide association analysis for identifying genetic loci associated with resistance to Fusarium graminearum infection, Journal of Fungi, 9(12): 1157. https://doi.org/10.3390/jof9121157 PMid:38132758 PMCid:PMC10744209 Zhou G., Li S., Ma L., Wang F., Jiang F., Sun Y., Ruan X., Cao Y., Wang Q., Zhang Y., Fan X., and Gao X., 2021, Mapping and validation of a stable quantitative trait locus conferring maize resistance to Gibberella ear rot, Plant Disease, 105(7): 1984-1991. https://doi.org/10.1094/PDIS-11-20-2487-RE PMid:33616427 Zhou L., and Jiang L., 2024, Genomics-assisted breeding in maize: techniques and outcomes, Maize Genomics and Genetics, 15(3): 111-122. https://doi.org/10.5376/mgg.2024.15.0012 Zhu Y.L., Song Q.J., Hyten D.L., Van Tassell C.P., Matukumalli L.K., Grimm D.R., Hyatt S.M., Fickus E.W., Young N.D., and Cregan P.B., 2003, Single-nucleotide polymorphisms in soybean, Genetics, 163(3): 1123-1134. https://doi.org/10.1093/genetics/163.3.1123 PMid:12663549 PMCid:PMC1462490
RkJQdWJsaXNoZXIy MjQ4ODYzMg==