MPB_2024v15n6

Molecular Plant Breeding 2024, Vol.15, No.6, 328-339 http://genbreedpublisher.com/index.php/mpb 338 Gui J.Y., Rao S., Huang X., Liu X., Cheng S., and Xu F., 2022, Interaction between selenium and essential micronutrient elements in plants: a systematic review, The Science of the Total Environment, 853: 158673. https://doi.org/10.1016/j.scitotenv.2022.158673 PMid:36096215 Hasanuzzaman M., Bhuyan M.B., Raza A., Hawrylak-Nowak B., Matraszek-Gawron R., Al Mahmud J.A., Nahar K., and Fujita M., 2020, Selenium in plants: boon or bane, Environmental and Experimental Botany, 178: 104170. https://doi.org/10.1016/j.envexpbot.2020.104170 Hasanuzzaman M., Nahar K., García-Caparrós P., Parvin K., Zulfiqar F., Ahmed N., and Fujita M., 2022, Selenium supplementation and crop plant tolerance to metal/metalloid toxicity, Frontiers in Plant Science, 12: 792770. https://doi.org/10.3389/fpls.2021.792770 PMid:35046979 PMCid:PMC8761772 Heijari J., Kivimäenpää M., Hartikainen H., Julkunen-Tiitto R., and Wulff A., 2006, Responses of strawberry (Fragaria× ananassa) to supplemental UV-B radiation and selenium under field conditions, Plant and Soil, 282: 27-39. https://doi.org/10.1007/s11104-005-5168-x Huang C., Qin N., Sun L., Yu M., Hu W., and Qi Z., 2018, Selenium improves physiological parameters and alleviates oxidative stress in strawberry seedlings under low-temperature stress, International Journal of Molecular Sciences, 19(7): 1913. https://doi.org/10.3390/ijms19071913 PMid:29966265 PMCid:PMC6073314 Huang S., Gao L., Fu G., Du S., Wang Q., Li H., and Wan Y., 2023, Interactive effects between zinc and selenium on mineral element accumulation and fruit quality of strawberry, Agronomy, 13(10): 2453. https://doi.org/10.3390/agronomy13102453 Iqbal M., Shafiq F., Anwar S., Akram N.A., Ashraf M.A., Raza S.H., Ali N., and Ashraf M., 2022, Selenium and nano-selenium-mediated heat stress tolerance in plants, In: Hossain M.A., Ahammed G.J., Kolbert Z., El-Ramady H., Islam T., Schiavon M. (eds.), Selenium and nano-selenium in environmental stress management and crop quality improvement, sustainable plant nutrition in a changing world, Springer, Cham, Switzerland, pp.149-171. https://doi.org/10.1007/978-3-031-07063-1_8 Kikkert J., and Berkelaar E., 2013, Plant uptake and translocation of inorganic and organic forms of selenium, Archives of Environmental Contamination and Toxicology, 65(3): 458-465. https://doi.org/10.1007/s00244-013-9926-0 PMid:23793939 Lai X., Yang X., Rao S., Zhu Z., Cong X., Ye J., Zhang W., Liao Y., Cheng S., and Xu F., 2022, Advances in physiological mechanisms of selenium to improve heavy metal stress tolerance in plants, Plant Biology, 24(6): 913-919. https://doi.org/10.1111/plb.13435 PMid:35583793 Liu A., Xiao W., Lai W., Wang J., Li X., Yu H., and Zha Y., 2024, Potential application of selenium and copper nanoparticles in improving growth, quality, and physiological characteristics of strawberry under drought stress, Agriculture, 14(7): 1172. https://doi.org/10.3390/agriculture14071172 Lei J.J., Dai H.P., Tan C.H., Deng M.Q., Zhao M.Z., and Qian Y.M., 2006, Studies on the taxonomy of the strawberry (Fragaria) species distributed in China, Yuanyi Xuebao (Acta Horticulturae Sinica), 33(1): 1-5. Lin Y., Cao S., Wang X., Liu Y., Sun Z., Zhang Y., Li M., Wang Y., He W., Zhang Y., Chen Q., Wang X., Luo Y., and Tang H., 2024, Foliar application of sodium selenite affects the growth, antioxidant system, and fruit quality of strawberry, Frontiers in Plant Science, 15: 1449157. https://doi.org/10.3389/fpls.2024.1449157 PMid:39188541 PMCid:PMC11345235 Lin Y., Liang W., Cao S., Tang R., Mao Z., Lan G., Zhou S., Zhang Y., Li M., Wang Y., Chen Q., Zhang Y., Wang X., Luo Y., and Tang H., 2023, Postharvest application of sodium selenite maintains fruit quality and improves the gray mold resistance of strawberry, Agronomy, 13(7): 1689. https://doi.org/10.3390/agronomy13071689 Mimmo T., Tiziani R., Valentinuzzi F., Lucini L., Nicoletto C., Sambo P., Scampicchio M., Pii Y., and Cesco S., 2017, Selenium biofortification in Fragaria × ananassa: implications on strawberry fruits quality, content of bioactive health beneficial compounds and metabolomic profile, Frontiers in Plant Science, 8: 1887. https://doi.org/10.3389/fpls.2017.01887 PMid:29163609 PMCid:PMC5681748 Nedjimi B., 2024, Selenium as a powerful trace element for mitigation of plant salt stress: a review, Journal of Trace Elements and Minerals, 8: 100123. https://doi.org/10.1016/j.jtemin.2024.100123 Pourebrahimi M., Eshghi S., Ramezanian A., and Faghih S., 2023, Effect of combined application of selenium and hydrogen sulfide under salinity stress on yield, physiological traits and biofortification of strawberries in hydroponic cultivation, Scientia Horticulturae, 315: 111982. https://doi.org/10.1016/j.scienta.2023.111982 Santiago F., Silva M., Ribeiro F., Cipriano P., and Guilherme L., 2018, Influence of sulfur on selenium absorption in strawberry, Acta Scientiarum-Agronomy, 40: 35780. https://doi.org/10.4025/actasciagron.v40i1.35780

RkJQdWJsaXNoZXIy MjQ4ODYzMg==