MPB_2024v15n6

Molecular Plant Breeding 2024, Vol.15, No.6, 429-441 http://genbreedpublisher.com/index.php/mpb 440 Lin S., Liu Z., Sun S., Xue F., Li H., Tursun A., Cao L., Zhang L., Wilson Z., Zhang D., and Liang W., 2023, Rice HEAT SHOCK PROTEIN60-3B maintains male fertility under high temperature by starch granule biogenesis, Plant Physiology, https://doi.org/10.1093/plphys/kiad136 PMid:36861636 PMCid:PMC10315285 Liu X., Li X., Zhang X., and Wang S., 2010, Genetic analysis and mapping of a thermosensitive genic male sterility gene, tms6(t), in rice (Oryza sativa L.), Genome, 53(2): 119-124. https://doi.org/10.1139/g09-092 PMid:20140030 Peng H., Zhang Z., Wu B., Chen X., Zhang G., Zhang Z., Wan B., and Lu Y., 2008, Molecular mapping of two reverse photoperiod-sensitive genic male sterility genes (rpms1 and rpms2) in rice (Oryza sativa L.), Theoretical and Applied Genetics, 118: 77-83. https://doi.org/10.1007/s00122-008-0877-1 PMid:18810384 Soltanpour S., Tarinejad A., Hasanpur K., and Majidi M., 2022, A meta-analysis of microarray data revealed hub genes and transcription factors involved in drought stress response in rice (Oryza sativa L.), Functional Plant Biology, 49(10): 898-916. https://doi.org/10.1071/FP22028 PMid:35798354 Sun S., Wang D., Li J., Lei Y., Li G., Cai W., Zhao X., Liang W., and Zhang D., 2021a, Transcriptome analysis reveals photoperiod-associated genes expressed in rice anthers, Frontiers in Plant Science, 12: 621561. https://doi.org/10.3389/fpls.2021.621561 PMid:33719293 PMCid:PMC7953911 Sun Y., Fu M., Ang Y., Zhu L., Wei L., He Y., and Zeng H., 2022, Combined analysis of transcriptome and metabolome reveals that sugar, lipid, and phenylpropane metabolism are essential for male fertility in temperature-induced male sterile rice, Frontiers in Plant Science, 13: 945105. https://doi.org/10.3389/fpls.2022.945105 PMid:35968120 PMCid:PMC9370067 Sun Y., Xiong X., Wang Q., Zhu L., Wang L., He Y., and Zeng H., 2021b, Integrated analysis of small RNA, transcriptome, and degradome sequencing reveals the miR156, miR5488 and miR399 are involved in the regulation of male sterility in PTGMS rice, International Journal of Molecular Sciences, 22(5): 2260. https://doi.org/10.3390/ijms22052260 PMid:33668376 PMCid:PMC7956645 Suzuki K., Aoki N., Matsumura H., Okamura M., Ohsugi R., and Shimono H., 2015, Cooling water before panicle initiation increases chilling-induced male sterility and disables chilling-induced expression of genes encoding OsFKBP65 and heat shock proteins in rice spikelets, Plant, Cell & Environment, 38(7): 1255-1274. https://doi.org/10.1111/pce.12498 PMid:25496090 Viraktamath B., and Virmani S., 2001, Expression of thermosensitive genic male sterility in rice under varying temperature situations, Euphytica, 122: 137-143. https://doi.org/10.1023/A:1012607608792 Wan X., Wu S., Li Z., Dong Z., An X., Ma B., Tian Y., and Li J., 2019, Maize genic male-sterility genes and their applications in hybrid breeding: progress and perspectives, Molecular Plant, 12(3): 321-342. https://doi.org/10.1016/j.molp.2019.01.014 PMid:30690174 Wang D., Li J., Sun L., Hu Y., Yu J., Wang C., Zhang F., Hou H., Liang W., and Zhang D., 2021, Two rice MYB transcription factors maintain male fertility in response to photoperiod by modulating sugar partitioning, The New Phytologist, 231(4): 1612-1629. https://doi.org/10.1111/nph.17512 PMid:34031889 Wen J., Zeng Y., Chen Y., Fan F., and Li S., 2021, Genic male sterility increases rice drought tolerance, Plant Science, 312: 111057. https://doi.org/10.1016/j.plantsci.2021.111057 PMid:34620451 Wilkins O., Hafemeister C., Plessis A., Holloway-Phillips M., Pham G., Nicotra A., Gregorio G., Jagadish S., Septiningsih E., Bonneau R., and Purugganan M., 2016, EGRINs (environmental gene regulatory influence networks) in rice that function in the response to water deficit, high temperature, and agricultural environments, Plant Cell, 28: 2365-2384. https://doi.org/10.1105/tpc.16.00158 PMid:27655842 PMCid:PMC5134975 Wu J., Wang J., Hui W., Zhao F., Wang P., Su C., and Gong W., 2022, Physiology of plant responses to water stress and related genes: a review, Forests, 13(2): 324. https://doi.org/10.3390/f13020324 Xue Z.Y., Xu X., Zhou Y., Wang X.N., Zhang Y.C., Liu D., Zhao B.B., Duan L.X., and Qi X.Q., 2018, Deficiency of a triterpene pathway results in humidity-sensitive genic male sterility in rice, Nature Communications, 9: 604. https://doi.org/10.1038/s41467-018-03048-8

RkJQdWJsaXNoZXIy MjQ4ODYzMg==