MPB_2024v15n6

Molecular Plant Breeding 2024, Vol.15, No.6, 417-428 http://genbreedpublisher.com/index.php/mpb 428 Trono D., and Pecchioni N., 2022, Candidate genes associated with abiotic stress response in plants as tools to engineer tolerance to drought, salinity and extreme temperatures in wheat: an overview, Plants, 11(23): 3358. https://doi.org/10.3390/plants11233358 PMid:36501397 PMCid:PMC9737347 Urbanavičiūtė I., Bonfiglioli L., and Pagnotta M., 2021, One hundred candidate genes and their roles in drought and salt tolerance in wheat, International Journal of Molecular Sciences, 22(12): 6378. https://doi.org/10.3390/ijms22126378 PMid:34203629 PMCid:PMC8232269 Xu R.G., and Su Q.S., 2024, Molecular tools and genomic resources in Triticeae: enhancing crop productivity, Triticeae Genomics and Genetics, 15(2): 66-76. https://doi.org/10.5376/tgg.2024.15.0007 Xu Z., Lai X., Ren Y., Yang H., Wang H., Wang C., Xia J., Wang Z., Yang Z., Geng H., Shi X., and Zhang Y., 2023, Impact of drought stress on yield-related agronomic traits of different genotypes in spring wheat, Agronomy, 13(12): 2968. https://doi.org/10.3390/agronomy13122968 Zhao J., Sun L., Gao H., Hu M., Mu L., Cheng X., Wang J., Zhao Y., Li Q., Wang P., Li H., and Zhang Y., 2023, Genome-wide association study of yield-related traits in common wheat (Triticum aestivumL.) under normal and drought treatment conditions, Frontiers in Plant Science, 13: 1098560. https://doi.org/10.3389/fpls.2022.1098560 PMid:36684753 PMCid:PMC9846334

RkJQdWJsaXNoZXIy MjQ4ODYzMg==