MPB_2024v15n6

Molecular Plant Breeding 2024, Vol.15, No.6, 417-428 http://genbreedpublisher.com/index.php/mpb 427 Kumar S., Jacob S., Mir R., Vikas V., Kulwal P., Chandra T., Kaur S., Kumar U., Kumar S., Sharma S., Singh R., Prasad S., Singh A., Singh A., Kumari J., Saharan M., Bhardwaj S., Prasad M., Kalia S., and Singh K., 2022, Indian wheat genomics initiative for harnessing the potential of wheat germplasm resources for breeding disease-resistant, nutrient-dense, and climate-resilient cultivars, Frontiers in Genetics, 13: 834366. https://doi.org/10.3389/fgene.2022.834366 PMid:35846116 PMCid:PMC9277310 Mahpara S., Bashir M., Ullah R., Bilal M., Kausar S., Latif M., Arif M., Akhtar I., Brestič M., Zuan A., Salama E., Al-hashimi A., and Alfagham A., 2022, Field screening of diverse wheat germplasm for determining their adaptability to semi-arid climatic conditions, PLoS One, 17(11): e0277595. https://doi.org/10.1371/journal.pone.0277595 PMid:36383543 PMCid:PMC9668154 Ma Z.Q., and Cai R.X., 2024, The significance of wide hybridization for wheat genetic improvement, Triticeae Genomics and Genetics, 15(2): 100-110. https://doi.org/10.5376/tgg.2024.15.0010 Miedaner T., and Korzun V., 2012, Marker-assisted selection for disease resistance in wheat and barley breeding, Phytopathology, 102(6): 560-566. https://doi.org/10.1094/PHYTO-05-11-0157 PMid:22568813 Mondal S., Rutkoski J., Velu G., Singh P., Crespo-Herrera L., Guzmán C., Bhavani S., Lan C., He X., and Singh R., 2016, Harnessing diversity in wheat to enhance grain yield, climate resilience, disease and insect pest resistance and nutrition through conventional and modern breeding approaches, Frontiers in Plant Science, 7: 991. https://doi.org/10.3389/fpls.2016.00991 PMid:27458472 PMCid:PMC4933717 Pang Y., Wu Y., Liu C., Li W., Amand P., Bernardo A., Wang D., Dong L., Yuan X., Zhang H., Zhao M., Li L., Wang L., He F., Liang Y., Yan Q., Lu Y., Su Y., Jiang H., Wu J., Li A., Kong L., Bai G., and Liu S., 2021, High-resolution genome-wide association study and genomic prediction for disease resistance and cold tolerance in wheat, Theoretical and Applied Genetics, 134: 2857-2873. https://doi.org/10.1007/s00122-021-03863-6 PMid:34075443 Quan X., Liang X., Li H., Xie C., He W., and Qin Y., 2021, Identification and characterization of wheat germplasm for salt tolerance, Plants, 10(2): 268. https://doi.org/10.3390/plants10020268 PMid:33573193 PMCid:PMC7911706 Rauf S., Zaharieva M., Warburton M., Zhang P., Al-Sadi A., Khalil F., Kozak M., and Tariq S., 2015, Breaking wheat yield barriers requires integrated efforts in developing countries, Journal of Integrative Agriculture, 14: 1447-1474. https://doi.org/10.1016/S2095-3119(15)61035-8 Saeed M., Ahmad W., Ibrahim M., Khan M., Ullah F., Bari A., Ali S., Shah L., Ali M., Munsif F., Zubair A., Shah S., Lu J., Si H., and Ma C., 2022, Differential responses to yellow-rust stress assist in the identification of candidate wheat (Triticum aestivum L.) genotypes for resistance breeding, Agronomy, 12(9): 2038. https://doi.org/10.3390/agronomy12092038 Sall A., Kabbaj H., Menoum S., Cissé M., Geleta M., Ortiz R., and Bassi F., 2023, Durum wheat heat tolerance loci defined via a north-south gradient, The Plant Genome, 17(1): e20414. https://doi.org/10.1002/tpg2.20414 PMid:38059316 Sehgal D., Vikram P., Sansaloni C., Ortiz C., Pierre C., Payne T., Ellis M., Amri A., Petroli C., Wenzl P., and Singh S., 2015, Exploring and mobilizing the gene bank biodiversity for wheat improvement, PLoS One, 10(7): e0132112. https://doi.org/10.1371/journal.pone.0132112 PMid:26176697 PMCid:PMC4503568 Singh R., Huerta-Espino J., Sharma R., Joshi A., and Trethowan R., 2007, High yielding spring bread wheat germplasm for global irrigated and rainfed production systems, Euphytica, 157: 351-363. https://doi.org/10.1007/s10681-006-9346-6 Sinha D., Maurya A., Abdi G., Majeed M., Agarwal R., Mukherjee R., Ganguly S., Aziz R., Bhatia M., Majgaonkar A., Seal S., Das M., Banerjee S., Chowdhury S., Adeyemi S., and Chen J., 2023, Integrated genomic selection for accelerating breeding programs of climate-smart cereals, Genes, 14(7): 1484. https://doi.org/10.3390/genes14071484 PMid:37510388 PMCid:PMC10380062 Shahid S., Ali Q., Ali S., Al-Misned F., and Maqbool S., 2022, Water deficit stress tolerance potential of newly developed wheat genotypes for better yield based on agronomic traits and stress tolerance indices: physio-biochemical responses, lipid peroxidation and antioxidative defense mechanism, Plants, 11(3): 466. https://doi.org/10.3390/plants11030466 PMid:35161446 PMCid:PMC8839292 Shumny V., Khlestkina E., Leonova I., and Salina E., 2016, Broadening the genetic diversity of bread wheat using alien germplasm: emphasis on disease resistance, In: Korogodina V., Mothersill C., Inge-Vechtomov S., and Seymour C. (eds.), Genetics, evolution and radiation, Springer, Cham, Switzerland, pp.107-120.

RkJQdWJsaXNoZXIy MjQ4ODYzMg==