MPB_2024v15n6

Molecular Plant Breeding 2024, Vol.15, No.6, 417-428 http://genbreedpublisher.com/index.php/mpb 426 References Ahmed H., Naeem M., Zeng Y., Rashid M., Ullah A., Saeed A., and Qadeer A., 2022a, Genome-wide association mapping for high temperature tolerance in wheat through 90k SNP array using physiological and yield traits, PLoS One, 17(6): e0286776. https://doi.org/10.1371/journal.pone.0286776 PMid:37314997 PMCid:PMC10266673 Ahmed H., Zeng Y., Shah A., Yar M., Ullah A., and Ali M., 2022b, Conferring of drought tolerance in wheat (Triticum aestivumL.) genotypes using seedling indices, Frontiers in Plant Science, 13: 961049. https://doi.org/10.3389/fpls.2022.961049 PMid:35937360 PMCid:PMC9355593 Babu P., Baranwal D., Harikrishna, Pal D., Bharti H., Joshi P., Thiyagarajan B., Gaikwad K., Bhardwaj S., Singh G., and Singh A., 2020, Application of genomics tools in wheat breeding to attain durable rust resistance, Frontiers in Plant Science, 11: 567147. https://doi.org/10.3389/fpls.2020.567147 PMid:33013989 PMCid:PMC7516254 Belay G., Zhang Z., and Xu P., 2021, Physio-morphological and biochemical trait-based evaluation of Ethiopian and Chinese wheat germplasm for drought tolerance at the seedling stage, Sustainability, 13(9): 4605. https://doi.org/10.3390/su13094605 Blanco I., Rajaram S., and Kronstad W., 2001, Agronomic potential of synthetic hexaploid wheat-derived populations, Crop Science, 41(3): 670-676. https://doi.org/10.2135/cropsci2001.413670x Crespo-Herrera L., Crossa J., Huerta-Espino J., Vargas M., Mondal S., Velu G., Payne T., Braun H., and Singh R., 2018, Genetic gains for grain yield in CIMMYT’s semi-arid wheat yield trials grown in suboptimal environments, Crop Science, 58: 1890-1898. https://doi.org/10.2135/cropsci2018.01.0017 PMid:33343013 PMCid:PMC7691759 Dwivedi S., Scheben A., Edwards D., Spillane C., and Ortiz R., 2017, Assessing and exploiting functional diversity in germplasm pools to enhance abiotic stress adaptation and yield in cereals and food legumes, Frontiers in Plant Science, 8: 1461. https://doi.org/10.3389/fpls.2017.01461 PMid:28900432 PMCid:PMC5581882 Emam M., el-mageed A., Niedbała G., Sabrey S., Fouad A., Kapiel T., Piekutowska M., and Mahmoud S., 2022, Genetic characterization and agronomic evaluation of drought tolerance in ten Egyptian wheat (Triticum aestivumL.) cultivars, Agronomy, 12(5): 1217. https://doi.org/10.3390/agronomy12051217 Ghaffar A., Hussain N., Ajaj R., Shahin S., Bano H., Javed M., Khalid A., Yasmin M., Shah K., Zaheer M., Iqbal M., Zafar Z., and Athar H., 2023, Photosynthetic activity and metabolic profiling of bread wheat cultivars contrasting in drought tolerance, Frontiers in Plant Science, 14: 1123080. https://doi.org/10.3389/fpls.2023.1123080 PMid:36844078 PMCid:PMC9945586 Gupta P., Balyan H., Sharma S., and Kumar R., 2020, Genetics of yield, abiotic stress tolerance and biofortification in wheat (Triticum aestivumL.), Theoretical and Applied Genetics, 133: 1569-1602. https://doi.org/10.1007/s00122-020-03583-3 PMid:32253477 Gupta P., Langridge P., and Mir R., 2010, Marker-assisted wheat breeding: present status and future possibilities, Molecular Breeding, 26: 145-161. https://doi.org/10.1007/s11032-009-9359-7 Hussain B., Akpınar B., Alaux M., Algharib A., Sehgal D., Ali Z., Aradottir G., Batley J., Bellec A., Bentley A., Cagirici H., Cattivelli L., Choulet F., Cockram J., Desiderio F., Devaux P., Doğramacı M., Dorado G., Dreisigacker S., Edwards D., El-Hassouni K., Eversole K., Fahima T., Figueroa M., Gálvez S., Gill K., Govta L., Gul A., Hensel G., Hernández P., Crespo-Herrera L., Ibrahim A., Kilian B., Korzun V., Krugman T., Li Y., Liu S., Mahmoud A., Morgounov A., Muslu T., Naseer F., Ordon F., Paux E., Perović D., Reddy G., Reif J., Reynolds M., Roychowdhury R., Rudd J., Sen T., Sukumaran S., Ozdemir B., Tiwari V., Ullah N., Unver T., Yazar S., Appels R., and Budak H., 2022, Capturing wheat phenotypes at the genome level, Frontiers in Plant Science, 13: 851079. https://doi.org/10.3389/fpls.2022.851079 PMid:35860541 PMCid:PMC9289626 Jabran M., Ali M., Zahoor A., Muhae-Ud-Din G., Liu T., Chen W., and Gao L., 2023, Intelligent reprogramming of wheat for enhancement of fungal and nematode disease resistance using advanced molecular techniques, Frontiers in Plant Science, 14: 1132699. https://doi.org/10.3389/fpls.2023.1132699 PMid:37235011 PMCid:PMC10206142 Khadka K., Raizada M., and Navabi A., 2020a, Recent progress in germplasm evaluation and gene mapping to enable breeding of drought-tolerant wheat, Frontiers in Plant Science, 11: 1149. https://doi.org/10.3389/fpls.2020.01149 PMid:32849707 PMCid:PMC7417477 Khadka K., Earl H., Raizada M., and Navabi A., 2020b, A physio-morphological trait-based approach for breeding drought tolerant wheat, Frontiers in Plant Science, 11: 715. https://doi.org/10.3389/fpls.2020.00715

RkJQdWJsaXNoZXIy MjQ4ODYzMg==