MPB_2024v15n5

Molecular Plant Breeding 2024, Vol.15, No.5, 282-294 http://genbreedpublisher.com/index.php/mpb 294 Romeis J., Naranjo S., Meissle M., and Shelton A., 2019, Genetically engineered crops help support conservation biological control, Biological Control, 130: 136-154. https://doi.org/10.1016/J.BIOCONTROL.2018.10.001 Sethi M., Saini D., Devi V., Kaur C., Singh M., Singh J., Pruthi G., Kaur A., Singh A., and Chaudhary D., 2023, Unravelling the genetic framework associated with grain quality and yield-related traits in maize (Zeamays L.), Frontiers in Genetics, 14: 1248697. https://doi.org/10.3389/fgene.2023.1248697 Sharma P., Singh S., Iqbal H., Parra-Saldívar R., Varjani S., and Tong Y., 2022, Genetic modifications associated with sustainability aspects for sustainable developments, Bioengineered, 13: 9509-9521. https://doi.org/10.1080/21655979.2022.2061146 Simmons C., Lafitte H., Reimann K., Brugière N., Roesler K., Albertsen M., Greene T., and Habben J., 2021, Successes and insights of an industry biotech program to enhance maize agronomic traits, Plant Science, 307: 110899. https://doi.org/10.1016/j.plantsci.2021.110899 Svitashev S., Young J., Schwartz C., Gao H., Falco S., and Cigan A., 2015, Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA, Plant Physiology, 169: 931-945. https://doi.org/10.1104/pp.15.00793 Távora F., Diniz F., Rêgo-Machado C., Freitas N., Arraes F., Andrade E., Furtado L., Osiro K., Sousa N., Cardoso T., Henning L., Molinari P., Feingold S., Hunter W., Sá M., Kobayashi A., Nepomuceno A., Santiago T., and Molinari H., 2022, CRISPR/Cas- and topical RNAi-based technologies for crop management and improvement: reviewing the risk assessment and challenges towards a more sustainable agriculture, Frontiers in Bioengineering and Biotechnology, 10: 913728. https://doi.org/10.3389/fbioe.2022.913728 Thudi M., Palakurthi R., Schnable J., Chitikineni A., Dreisigacker S., Mace E., Srivastava R., Satyavathi C., Odeny D., Tiwari V., Lam H., Hong Y., Singh V., Li G., Xu Y., Chen X., Kaila S., Nguyen H., Sivasankar S., Jackson S., Close T., Shubo W., and Varshney R., 2020, Genomic resources in plant breeding for sustainable agriculture, Journal of Plant Physiology, 257: 153351. https://doi.org/10.1016/j.jplph.2020.153351 Wu J., Lawit S., Weers B., Sun J., Mongar N., Hemert J., Melo R., Meng X., Rupe M., Clapp J., Collet K., Trecker L., Roesler K., Peddicord L., Thomas J., Hunt J., Zhou W., Hou Z., Wimmer M., Jantes J., Mo H., Liu L., Wang Y., Walker C., Danilevskaya O., Lafitte R., Schussler J., Shen B., and Habben J., 2019, Overexpression of zmm28 increases maize grain yield in the field, Proceedings of the National Academy of Sciences of the United States of America, 116(47): 23850-23858. https://doi.org/10.1073/pnas.1902593116 Wu J.Y., and Li Q., 2024, The impact of genetic engineering on maize herbicide tolerance, Maize Genomics and Genetics, 15(2): 60-69. https://doi.org/10.5376/mgg.2024.15.0007 Ye R., Yang X., and Rao Y., 2022, Genetic engineering technologies for improving crop yield and quality, Agronomy, 12(4): 759. https://doi.org/10.3390/agronomy12040759 Zhou J., and Xu L.M., 2024, Conventional breeding vs. genetic engineering in maize: a comparative study, Maize Genomics and Genetics, 15(2): 49-59. https://doi.org/10.5376/mgg.2024.15.0006 Zilberman D., Holland T., and Trilnick I., 2018, Agricultural GMOs- what we know and where scientists disagree, Sustainability, 10(5): 1514. https://doi.org/10.3390/SU10051514

RkJQdWJsaXNoZXIy MjQ4ODYzMg==