Molecular Plant Breeding 2024, Vol.15, No.5, 282-294 http://genbreedpublisher.com/index.php/mpb 293 Habte E., Marenya P., Beyene F., and Bekele A., 2023, Reducing susceptibility to drought under growing conditions as set by farmers: the impact of new generation drought tolerant maize varieties in Uganda, Front. Sustain. Food Syst., 6: 854856. https://doi.org/10.3389/fsufs.2022.854856 Herman R., Gaffney J., and Storer N., 2020, Enlightened oversight of genetically engineered crops for the next generation, Agricultural & Environmental Letters, 5(1): e20004. https://doi.org/10.1002/ael2.20004 Hernández-Terán A., Wegier A., Benítez M., Lira R., and Escalante A., 2017, Domesticated, genetically engineered, and wild plant relatives exhibit unintended phenotypic differences: a comparative meta-analysis profiling rice, canola, maize, sunflower, and pumpkin, Frontiers in Plant Science, 8: 2030. https://doi.org/10.3389/fpls.2017.02030 Huang C., Wang Z., Zhu P., Wang C., Wang C., Xu W., Li Z., Fu W., and Zhu S., 2022, RNA interference-based genetic engineering maize resistant to Apolygus lucorum does not manifest unpredictable unintended effects relative to conventional breeding: short interfering RNA, transcriptome, and metabolome analysis, Frontiers in Plant Science, 13: 745708. https://doi.org/10.3389/fpls.2022.745708 Klümper W., and Qaim M., 2014, A meta-analysis of the impacts of genetically modified crops, PLoS One, 9(11): 111629. https://doi.org/10.1371/journal.pone.0111629 Lambing C., and Heckmann S., 2018, Tackling plant meiosis: from model research to crop improvement, Frontiers in Plant Science, 9: 829. https://doi.org/10.3389/fpls.2018.00829 Li C., 2020, Breeding crops by design for future agriculture, Journal of Zhejiang University-Science B, 21: 423-425. https://doi.org/10.1631/jzus.B2010001 Liu S., and Qin F., 2021, Genetic dissection of maize drought tolerance for trait improvement, Molecular Breeding, 41: 8. https://doi.org/10.1007/s11032-020-01194-w Lorenzo C., Debray K., Herwegh D., Develtere W., Impens L., Schaumont D., Vandeputte W., Aesaert S., Coussens G., Boe Y., Demuynck K., Hautegem T., Pauwels L., Jacobs T., Ruttink T., Nelissen H., and Inzé D., 2022, BREEDIT: a multiplex genome editing strategy to improve complex quantitative traits in maize, The Plant Cell, 35(1): 218-238. https://doi.org/10.1093/plcell/koac243 Ma C., Zhan W., Li W., Zhang M., Lu M., Xia X., Bai Q., Wang X., Yan P., and Xi Z., 2019, The analysis of functional genes in maize molecular breeding, Molecular Breeding, 39: 30. https://doi.org/10.1007/s11032-018-0900-4 Meissle M., Naranjo S., Kohl C., Riedel J., and Romeis J., 2014, Does the growing of Bt maize change abundance or ecological function of non-target animals compared to the growing of non-GM maize? a systematic review protocol, Environmental Evidence, 3: 7. https://doi.org/10.1186/2047-2382-3-7 Miedaner T., Boeven A., Gaikpa D., Kistner M., and Grote C., 2020, Genomics-assisted breeding for quantitative disease resistances in small-grain cereals and maize, International Journal of Molecular Sciences, 21(24): 9717. https://doi.org/10.3390/ijms21249717 Muntean L., Ona A., Berindean I., Racz I., and Muntean S., 2022, Maize breeding: from domestication to genomic tools, Agronomy, 12(10): 2365. https://doi.org/10.3390/agronomy12102365 Nepolean T., Kaul J., Mukri G., and Mittal S., 2018, Genomics-enabled next-generation breeding approaches for developing system-specific drought tolerant hybrids in maize, Frontiers in Plant Science, 9: 361. https://doi.org/10.3389/fpls.2018.00361 Palacios-Rojas N., McCulley L., Kaeppler M., Titcomb T., Gunaratna N., Lopez-Ridaura S., and Tanumihardjo S., 2020, Mining maize diversity and improving its nutritional aspects within agro-food systems, Comprehensive Reviews in Food Science and Food Safety, 19(4): 1809-1834. https://doi.org/10.1111/1541-4337.12552 Perry E., Ciliberto F., Hennessy D., and Moschini G., 2016, Genetically engineered crops and pesticide use in U.S. maize and soybeans, Science Advances, 2(8): e1600850. https://doi.org/10.1126/sciadv.1600850 Prasanna B., Cairns J., Zaidi P., Beyene Y., Makumbi D., Gowda M., Magorokosho C., Zaman-Allah M., Olsen M., Das A., Worku M., Gethi J., Vivek B., Nair S., Rashid Z., Vinayan M., Issa A., Vicente F., Dhliwayo T., and Zhang X., 2021, Beat the stress: breeding for climate resilience in maize for the tropical rainfed environments, Theoretical and Applied Genetics, 134: 1729-1752. https://doi.org/10.1007/s00122-021-03773-7 Raj S., and Nadarajah K., 2022, QTL and candidate genes: techniques and advancement in abiotic stress resistance breeding of major cereals, International Journal of Molecular Sciences, 24(1): 6. https://doi.org/10.3390/ijms24010006 Rajput M., Choudhary K., Kumar M., Chawade A., Ortiz R., Vivekanand V., and Pareek N., 2021, RNA interference and CRISPR/Cas gene editing for crop improvement: paradigm shift towards sustainable agriculture, Plants, 10(9): 1914. https://doi.org/10.3390/plants10091914 Rice B., and Lipka A., 2021, Diversifying maize genomic selection models, Molecular Breeding, 41: 33. https://doi.org/10.1007/s11032-021-01221-4
RkJQdWJsaXNoZXIy MjQ4ODYzMg==