MPB_2024v15n5

Molecular Plant Breeding 2024, Vol.15, No.5, 233-246 http://genbreedpublisher.com/index.php/mpb 244 Araus J., and Cairns J., 2014, Field high-throughput phenotyping: the new crop breeding frontier, Trends in Plant Science, 19(1): 52-61. https://doi.org/10.1016/j.tplants.2013.09.008 Bai G., Ge Y., Hussain W., Baenziger P., and Graef G., 2016, A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding, Comput. Electron. Agric., 128: 181-192. https://doi.org/10.1016/j.compag.2016.08.021 Cabrera-Bosquet L., Crossa J., Zitzewitz J., Serret M., and Araus J., 2012, High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge, Journal of Integrative Plant Biology, 54(5): 312-320. https://doi.org/10.1111/j.1744-7909.2012.01116.x Cao X., Liu Y., Yu R., Han D., and Su B., 2021, A comparison of UAV RGB and multispectral imaging in phenotyping for stay green of wheat population, Remote. Sens., 13: 5173. https://doi.org/10.3390/rs13245173 Chen J., Chu C., Souza E., Guttieri M., Chen X., Xu S., Hole D., and Zemetra R., 2012, Genome-wide identification of QTL conferring high-temperature adult-plant (HTAP) resistance to stripe rust (Puccinia striiformis f. sp. tritici) in wheat, Molecular Breeding, 29: 791-800. https://doi.org/10.1007/s11032-011-9590-x Condorelli G., Maccaferri M., Newcomb M., Andrade-Sanchez P., White J., French A., Sciara G., Ward R., and Tuberosa R., 2018, Comparative aerial and ground based high throughput phenotyping for the genetic dissection of NDVI as a proxy for drought adaptive traits in durum wheat, Frontiers in Plant Science, 9: 893. https://doi.org/10.3389/fpls.2018.01885 Crain J., Wang X., Evers B., and Poland J., 2022, Evaluation of field‐based single plant phenotyping for wheat breeding, The Plant Phenome Journal, 5(1): e20045. https://doi.org/10.1002/ppj2.20045 Crain J., Wang X., Lucas M., and Poland J., 2021, Experiences of applying field-based high-throughput phenotyping for wheat breeding, In: Zhou J., and Nguyen H.T. (eds.), High-throughput crop phenotyping, concepts and strategies in plant sciences, Springer, Cham, Switzerland, pp.71-99. https://doi.org/10.1007/978-3-030-73734-4_5 Danilevicz M., Bayer P., Nestor B., Bennamoun M., and Edwards D., 2021, Resources for image-based high-throughput phenotyping in crops and data sharing challenges, Plant Physiology, 187(2): 699-715. https://doi.org/10.1093/plphys/kiab301 Feng L., Chen S., Zhang C., Zhang Y., and He Y., 2021, A comprehensive review on recent applications of unmanned aerial vehicle remote sensing with various sensors for high-throughput plant phenotyping, Comput. Electron. Agric., 182: 106033. https://doi.org/10.1016/j.compag.2021.106033 Feng X., Zhan Y., Wang Q., Yang X., Yu C., Wang H., Tang Z., Jiang D., Peng C., and He Y., 2020, Hyperspectral imaging combined with machine learning as a tool to obtain high-throughput plant salt-stress phenotyping, The Plant Journal, 101(6): 1448-1461. https://doi.org/10.1111/tpj.14597 Goggin F., Lorence A., and Topp C., 2015, Applying high-throughput phenotyping to plant-insect interactions: picturing more resistant crops, Current Opinion in Insect Science, 9: 69-76. https://doi.org/10.1016/j.cois.2015.03.002 Haghighattalab A., Pérez L., Mondal S., Singh D., Schinstock D., Rutkoski J., Ortiz-Monasterio I., Singh R., Goodin D., and Poland J., 2016, Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries, Plant Methods, 12: 35. https://doi.org/10.1186/s13007-016-0134-6 Hu Y., Knapp S., and Schmidhalter U., 2020, Advancing high-throughput phenotyping of wheat in early selection cycles, Remote. Sens., 12: 574. https://doi.org/10.3390/rs12030574 Juliana P., Montesinos-López O., Crossa J., Mondal S., Pérez L., Poland J., Huerta-Espino J., Crespo-Herrera L., Govindan V., Dreisigacker S., Shrestha S., Pérez-Rodríguez P., Espinosa F., and Singh R., 2018, Integrating genomic-enabled prediction and high-throughput phenotyping in breeding for climate-resilient bread wheat, Theoretical and Applied Genetics, 132: 177-194. https://doi.org/10.1007/s00122-018-3206-3 Khadka K., Earl H., Raizada M., and Navabi A., 2020, A physio-morphological trait-based approach for breeding drought tolerant wheat, Frontiers in Plant Science, 11: 715. https://doi.org/10.3389/fpls.2020.00715 Kipp S., Mistele B., Baresel P., and Schmidhalter U., 2014, High-throughput phenotyping early plant vigour of winter wheat, European Journal of Agronomy, 52: 271-278. https://doi.org/10.1016/j.eja.2013.08.009

RkJQdWJsaXNoZXIy MjQ4ODYzMg==