MPB_2024v15n5

Molecular Plant Breeding 2024, Vol.15, No.5, 220-232 http://genbreedpublisher.com/index.php/mpb 232 Tomkowiak A., Bocianowski J., Radzikowska D., and Kowalczewski P., 2019, Selection of parental material to maximize heterosis using SNP and SilicoDarT markers in maize, Plants, 8(9): 349. https://doi.org/10.3390/plants8090349 Weber S., Chawla H., Ehrig L., Hickey L., Frisch M., and Snowdon R., 2023, Accurate prediction of quantitative traits with failed SNP calls in canola and maize, Frontiers in Plant Science, 14: 1221750. https://doi.org/10.3389/fpls.2023.1221750 Wei F., Coe E., Nelson W., Bharti A., Engler F., Butler E., Kim H., Goicoechea J., Chen M., Lee S., Fuks G., Sanchez-Villeda H., Schroeder S., Fang Z., McMullen M., Davis G., Bowers J., Paterson A., Schaeffer M., Gardiner J., Cone K., Messing J., Soderlund C., and Wing R., 2007, Physical and genetic structure of the maize genome reflects its complex evolutionary history, PLoS Genetics, 3(7): e123. https://doi.org/10.1371/journal.pgen.0030123 Whitt S., Wilson L., Tenaillon M., Gaut B., and Buckler E., 2002, Genetic diversity and selection in the maize starch pathway, Proceedings of the National Academy of Sciences of the United States of America, 99: 12959-12962. https://doi.org/10.1073/pnas.202476999 Wright S., Bi I., Schroeder S., Yamasaki M., Doebley J., McMullen M., and Gaut B., 2005, The effects of artificial selection on the maize genome, Science, 308: 1310-1314. https://doi.org/10.1126/science.1107891 Xu C., Ren Y., Jian Y., Guo Z., Zhang Y., Xie C., Fu J., Wang H., Wang G., Xu Y., Li P., and Zou C., 2017, Development of a maize 55 K SNP array with improved genome coverage for molecular breeding, Molecular Breeding, 37: 20. https://doi.org/10.1007/s11032-017-0622-z Yan J., Yang X., Shah T., Sanchez-Villeda H., Li J., Warburton M., Zhou Y., Crouch J., and Xu Y., 2010, High-throughput SNP genotyping with the GoldenGate assay in maize, Molecular Breeding, 25: 441-451. https://doi.org/10.1007/s11032-009-9343-2 Yang X., Gao S., Xu S., Zhang Z., Prasanna B., Li L., Li J., and Yan J., 2011, Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize, Molecular Breeding, 28: 511-526. https://doi.org/10.1007/s11032-010-9500-7 Yin X., Bi Y., Jiang F., Guo R., Zhang Y., Fan J., Kang M., and Fan X., 2022, Fine mapping of candidate quantitative trait loci for plant and ear height in a maize nested-association mapping population, Frontiers in Plant Science, 13: 963985. https://doi.org/10.3389/fpls.2022.963985 You Q., Yang X., Peng Z., Xu L., and Wang J., 2018, Development and applications of a high throughput genotyping tool for polyploid crops: single nucleotide polymorphism (SNP) array, Frontiers in Plant Science, 9: 104. https://doi.org/10.3389/fpls.2018.00104 Zhang Y., Liu P., Zhang X., Zheng Q., Chen M., Ge F., Li Z., Sun W., Guan Z., Liang T., Zheng Y., Tan X., Zou C., Peng H., Pan G., and Shen Y., 2018, Multi-locus genome-wide association study reveals the genetic architecture of stalk lodging resistance-related traits in maize, Frontiers in Plant Science, 9: 611. https://doi.org/10.3389/fpls.2018.00611 Zhao C., Zhang Y., Du J., Guo X., Wen W., Gu S., Wang J., and Fan J., 2019, Crop phenomics: current status and perspectives, Frontiers in Plant Science, 10: 714. https://doi.org/10.3389/fpls.2019.00714

RkJQdWJsaXNoZXIy MjQ4ODYzMg==