Molecular Plant Breeding 2024, Vol.15, No.5, 220-232 http://genbreedpublisher.com/index.php/mpb 231 He C., Fu J., Zhang J., Li Y., Zheng J., Zhang H., Yang X., Wang J., and Wang G., 2017, A gene-oriented haplotype comparison reveals recently selected genomic regions in temperate and tropical maize germplasm, PLoS One, 12(1): e0169806. https://doi.org/10.1371/journal.pone.0169806 He J., Zhao X., Laroche A., Lu Z., Liu H., and Li Z., 2014, Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding, Frontiers in Plant Science, 5: 484. https://doi.org/10.3389/fpls.2014.00484 Hirsch C., Foerster J., Johnson J., Sekhon R., Muttoni G., Vaillancourt B., Peñagaricano F., Lindquist E., Pedraza M., Barry K., León N., Kaeppler S., and Buell C., 2014, Insights into the maize pan-genome and pan-transcriptome, Plant Cell, 26: 121-135. https://doi.org/10.1105/tpc.113.119982 Huang W.Z., and Hong Z.M., 2024, Marker-assisted selection in cassava: from theory to practice, Plant Gene and Trait, 15(1): 33-43. https://doi.org/10.5376/pgt.2024.15.0005 Jiang C., 2024, Genetic mechanisms of crop disease resistance: new advances in GWAS, Plant Gene and Trait, 15(1): 15-22. https://doi.org/10.5376/pgt.2024.15.0003 Kumar B., Abdel-Ghani A., Pace J., Reyes-Matamoros J., Hochholdinger F., and Lübberstedt T., 2014, Association analysis of single nucleotide polymorphisms in candidate genes with root traits in maize (Zeamays L.) seedlings, Plant Science, 224: 9-19. https://doi.org/10.1016/j.plantsci.2014.03.019 Li C., Jia Y., Zhou R., Liu L., Cao M., Zhou Y., Wang Z., and Di H., 2022, GWAS and RNA-seq analysis uncover candidate genes associated with alkaline stress tolerance in maize (Zeamays L.) seedlings, Frontiers in Plant Science, 13: 963874. https://doi.org/10.3389/fpls.2022.963874 Liu C., He S., Chen J., Wang M., Li Z., Wei L., Chen Y., Du M., Liu D., Li C., An C., Bhadauria V., Lai J., and Zhu W., 2023, A dual-subcellular localized β-glucosidase confers pathogen and insect resistance without a yield penalty in maize, Plant Biotechnology Journal, 22(4): 1017-1032. https://doi.org/10.1111/pbi.14242 Liu M., Tan X., Yang Y., Liu P., Zhang X., Zhang Y., Wang L., Hu Y., Ma L., Li Z., Zhang Y., Zou C., Lin H., Gao S., Lee M., Lübberstedt T., Pan G., and Shen Y., 2019, Analysis of the genetic architecture of maize kernel size traits by combined linkage and association mapping, Plant Biotechnology Journal, 18: 207-221. https://doi.org/10.1111/pbi.13188 Mammadov J., Chen W., Ren R., Pai R., Marchione W., Yalçin F., Witsenboer H., Greene T., Thompson S., and Kumpatla S., 2010, Development of highly polymorphic SNP markers from the complexity reduced portion of maize [Zea mays L.] genome for use in marker-assisted breeding, Theoretical and Applied Genetics, 121: 577-588. https://doi.org/10.1007/s00122-010-1331-8 Mora-Poblete F., Maldonado C., Henrique L., Uhdre R., Scapim C., and Mangolim C., 2023, Multi-trait and multi-environment genomic prediction for flowering traits in maize: a deep learning approach, Frontiers in Plant Science, 14: 1153040. https://doi.org/10.3389/fpls.2023.1153040 Morgil H., Gerçek Y., and Tulum I., 2020, Single nucleotide polymorphisms (SNPs) in plant genetics and breeding, In: Çalışkan M., Erol O., and Öz G.C. (eds.), The recent topics in genetic polymorphisms, IntechOpen, London, UK, pp.148. https://doi.org/10.5772/intechopen.91886 Njeri S., Makumbi D., Warburton M., Diallo A., Jumbo M., and Chemining’wa G., 2017, Genetic analysis of tropical quality protein maize (Zea mays L.) germplasm, Euphytica, 213: 261. https://doi.org/10.1007/s10681-017-2048-4 Osuman A., Badu‐Apraku B., Karikari B., Ifie B., Tongoona P., and Danquah E., 2022, Genome-wide association study reveals genetic architecture and candidate genes for yield and related traits under terminal drought, combined heat and drought in tropical maize germplasm, Genes, 13(2): 349. https://doi.org/10.3390/genes13020349 Pan Q., Li L., Yang X., Tong H., Xu S., Li Z., Li W., Muehlbauer G., Li J., and Yan J., 2016, Genome-wide recombination dynamics are associated with phenotypic variation in maize, The New Phytologist, 210(3): 1083-1094. https://doi.org/10.1111/nph.13810 Rafalski A., 2002, Applications of single nucleotide polymorphisms in crop genetics, Current Opinion in Plant Biology, 5(2): 94-100. https://doi.org/10.1016/S1369-5266(02)00240-6 Revilla P., Alves M., Andelković V., Balconi C., Dinis I., Mendes-Moreira P., Redaelli R., Galarreta J., Patto M., Žilić S., and Malvar R., 2022, Traditional foods from maize (Zeamays L.) in Europe, Frontiers in Nutrition, 8: 683399. https://doi.org/10.3389/fnut.2021.683399 Tenaillon M., Sawkins M., Long A., Gaut R., Doebley J., and Gaut B., 2001, Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.), Proceedings of the National Academy of Sciences of the United States of America, 98: 9161-9166. https://doi.org/10.1073/pnas.151244298
RkJQdWJsaXNoZXIy MjQ4ODYzMg==