Molecular Plant Breeding 2024, Vol.15, No.5, 317-327 http://genbreedpublisher.com/index.php/mpb 327 Valenzuela C., Ballesta P., Ahmar S., Fiaz S., Heidari P., Maldonado C., and Mora-Poblete F., 2021, Haplotype- and SNP-based GWAS for growth and wood quality traits in Eucalyptus cladocalyx trees under arid conditions, Plants, 10(1): 148. https://doi.org/10.3390/plants10010148 PMid:33450896 PMCid:PMC7828368 Wang J., Matthews M., Williams C., Shi R., Yang C., Tunlaya-Anukit S., Chen H., Li Q., Liu J., Lin C., Naik P., Sun Y., Loziuk P., Yeh T., Kim H., Gjersing E., Shollenberger T., Shuford C., Song J., Miller Z., Huang Y., Edmunds C., Liu B., Sun Y., Lin Y., Li W., Chen H., Peszlen I., Ducoste J., Ralph J., Chang H., Muddiman D., Davis M., Smith C., Isik F., Sederoff R., and Chiang V., 2018, Improving wood properties for wood utilization through multi-omics integration in lignin biosynthesis, Nature Communications, 9: 1579. https://doi.org/10.1038/s41467-018-03863-z PMid:29679008 PMCid:PMC5910405 Wang T., Zhang C., Zhang H., and Zhu H., 2021a, CRISPR/Cas9-mediated gene editing revolutionizes the improvement of horticulture food crops, Journal of Agricultural and Food Chemistry, 69(45): 13260-13269. https://doi.org/10.1021/acs.jafc.1c00104 PMid:33734711 Wang Z., Li L., and Ouyang L., 2021b, Efficient genetic transformation method for Eucalyptus genome editing, PLoS One, 16(5): e0252011. https://doi.org/10.1371/journal.pone.0252011 PMid:34029322 PMCid:PMC8143419 Zhu X., Weng Q., Bush D., Zhou C., Zhao H., Wang P., and Li F., 2023, High-density genetic linkage mapping reveals low stability of QTLs across environments for economic traits in Eucalyptus, Frontiers in Plant Science, 13: 1099705. https://doi.org/10.3389/fpls.2022.1099705 PMid:37082511 PMCid:PMC10112524
RkJQdWJsaXNoZXIy MjQ4ODYzMg==