MPB_2024v15n5

Molecular Plant Breeding 2024, Vol.15, No.5, 317-327 http://genbreedpublisher.com/index.php/mpb 326 Lima B., Cappa E., Silva-Junior O., Garcia C., Mansfield S., and Grattapaglia D., 2019, Quantitative genetic parameters for growth and wood properties in Eucalyptus “urograndis” hybrid using near-infrared phenotyping and genome-wide SNP-based relationships, PLoS One, 14(6): e0218747. https://doi.org/10.1371/journal.pone.0218747 PMid:31233563 PMCid:PMC6590816 Liu Q., Yang F., Zhang J., Liu H., Rahman S., Islam S., Ma W., and She M., 2021, Application of CRISPR/Cas9 in crop quality improvement, International Journal of Molecular Sciences, 22(8): 4206. https://doi.org/10.3390/ijms22084206 PMid:33921600 PMCid:PMC8073294 Min T., Hwarari D., Li D., Movahedi A., and Yang L., 2022, CRISPR-based genome editing and its applications in woody plants, International Journal of Molecular Sciences, 23(17): 10175. https://doi.org/10.3390/ijms231710175 PMid:36077571 PMCid:PMC9456532 Molla K., Sretenovic S., Bansal K., and Qi Y., 2021, Precise plant genome editing using base editors and prime editors, Nature Plants, 7: 1166-1187. https://doi.org/10.1038/s41477-021-00991-1 PMid:34518669 Mphahlele M., Isik F., Mostert-O’Neill M., Reynolds S., Hodge G., and Myburg A., 2020, Expected benefits of genomic selection for growth and wood quality traits in Eucalyptus grandis, Tree Genetics & Genomes, 16: 49. https://doi.org/10.1007/s11295-020-01443-1 Myburg A., Grattapaglia D., Tuskan G., Hellsten U., Hayes R., Grimwood J., Jenkins J., Lindquist E., Tice H., Bauer D., Goodstein D., Dubchak I., Poliakov A., Mizrachi E., Kullan A., Hussey S., Pinard D., Merwe K., Singh P., Jaarsveld I., Silva-Junior O., Togawa R., Pappas M., Faria D., Sansaloni C., Petroli C., Yang X., Ranjan P., Tschaplinski T., Ye C., Li T., Sterck L., Vanneste K., Murat F., Soler M., Clemente H., Saidi N., Cassan-Wang H., Dunand C., Hefer C., Bornberg-Bauer E., Kersting A., Vining K., Amarasinghe V., Ranik M., Naithani S., Elser J., Boyd A., Liston A., Spatafora J., Dharmwardhana P., Raja R., Sullivan C., Romanel E., Alves-Ferreira M., Külheim C., Foley W., Carocha V., Paiva J., Kudrna D., Brommonschenkel S., Pasquali G., Byrne M., Rigault P., Tibbits J., Spokevicius A., Jones R., Steane D., Vaillancourt R., Potts B., Joubert F., Barry K., Pappas G., Strauss S., Jaiswal P., Grima-Pettenati J., Salse J., Peer Y., Rokhsar D., and Schmutz J., 2014, The genome of Eucalyptus grandis, Nature, 510: 356-362. https://doi.org/10.1038/nature13308 PMid:24919147 Müller B., Filho J., Lima B., Garcia C., Missiaggia A., Aguiar A., Takahashi E., Kirst M., Gezan S., Silva-Junior O., Neves L., and Grattapaglia D., 2018, Independent and joint-GWAS for growth traits in Eucalyptus by assembling genome-wide data for 3 373 individuals across four breeding populations, The New Phytologist, 221(2): 818-833. https://doi.org/10.1111/nph.15449 PMid:30252143 Paludeto J., Grattapaglia D., Estopa R., and Tambarussi E., 2021, Genomic relationship-based genetic parameters and prospects of genomic selection for growth and wood quality traits in Eucalyptus benthamii, Tree Genetics & Genomes, 17: 38. https://doi.org/10.1007/s11295-021-01516-9 Plasencia A., Soler M., Dupas A., Ladouce N., Silva-Martins G., Martinez Y., Lapierre C., Franche C., Truchet I., and Grima-Pettenati J., 2016, Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation, Plant Biotechnology Journal, 14(6): 1381-1393. https://doi.org/10.1111/pbi.12502 PMid:26579999 Resende M., Resende M., Sansaloni C., Petroli C., Missiaggia A., Aguiar A., Abad J., Takahashi E., Rosado A., Faria D., Pappas G., Kilian A., and Grattapaglia D., 2012, Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees, The New Phytologist, 194(1): 116-128. https://doi.org/10.1111/j.1469-8137.2011.04038.x PMid:22309312 Sun Y., Jiang C., Jiang R., Wang F., Zhang Z., and Zeng J., 2021, A novel NAC transcription factor fromEucalyptus, EgNAC141, positively regulates lignin biosynthesis and increases lignin deposition, Frontiers in Plant Science, 12: 642090. https://doi.org/10.3389/fpls.2021.642090 PMid:33897732 PMCid:PMC8061705 Thapliyal G., Bhandari M., Vemanna R., Pandey S., Meena R., and Barthwal S., 2022, Engineering traits through CRISPR/Cas genome editing in woody species to improve forest diversity and yield, Critical Reviews in Biotechnology, 43: 884-903. https://doi.org/10.1080/07388551.2022.2092714 PMid:35968912 Thumma B., Southerton S., Bell J., Owen J., Henery M., and Moran G., 2010, Quantitative trait locus (QTL) analysis of wood quality traits in Eucalyptus nitens, Tree Genetics & Genomes, 6: 305-317. https://doi.org/10.1007/s11295-009-0250-9

RkJQdWJsaXNoZXIy MjQ4ODYzMg==