Molecular Plant Breeding 2024, Vol.15, No.5, 317-327 http://genbreedpublisher.com/index.php/mpb 325 Acknowledgments GenBreed Publisher appreciates the timely feedback provided by the two anonymous peer reviewers on the manuscript of this study. Conflict of Interest Disclosure The author affirms that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Ammitzboll H., Vaillancourt R., Potts B., Singarasa S., Mani R., and Freeman J., 2018, Quantitative trait loci (QTLs) for intumescence severity in Eucalyptus globulus and validation of QTL detection based on phenotyping using open-pollinated families of a mapping population, Plant Disease, 102(8): 1566-1573. https://doi.org/10.1094/PDIS-01-18-0003-RE PMid:30673414 Arora L., and Narula A., 2017, Gene editing and crop improvement using CRISPR-Cas9 system, Frontiers in Plant Science, 8: 1932. https://doi.org/10.3389/fpls.2017.01932 PMid:29167680 PMCid:PMC5682324 Ballesta P., Maldonado C., Pérez-Rodríguez P., and Mora F., 2019, SNP and haplotype-based genomic selection of quantitative traits in Eucalyptus globulus, Plants, 8(9): 331. https://doi.org/10.3390/plants8090331 PMid:31492041 PMCid:PMC6783840 Ballesta P., Serra N., Guerra F., Hasbún R., and Mora F., 2018, Genomic prediction of growth and stem quality traits in Eucalyptus globulus Labill. at its southernmost distribution limit in Chile, Forests, 9(12): 779. https://doi.org/10.3390/f9120779 Bortesi L., and Fischer R., 2015, The CRISPR/Cas9 system for plant genome editing and beyond, Biotechnology Advances, 33(1): 41-52. https://doi.org/10.1016/j.biotechadv.2014.12.006 PMid:25536441 Cao H., Vu G., and Gailing O., 2022, From genome sequencing to CRISPR-based genome editing for climate-resilient forest trees, International Journal of Molecular Sciences, 23(2): 966. https://doi.org/10.3390/ijms23020966 PMid:35055150 PMCid:PMC8780650 Cappa E., Lima B., Silva-Junior O., Garcia C., Mansfield S., and Grattapaglia D., 2019, Improving genomic prediction of growth and wood traits in Eucalyptus using phenotypes from non-genotyped trees by single-step GBLUP, Plant Science, 284: 9-15. https://doi.org/10.1016/j.plantsci.2019.03.017 PMid:31084883 Chanoca A., Vries L., and Boerjan W., 2019, Lignin engineering in forest trees, Frontiers in Plant Science, 10: 912. https://doi.org/10.3389/fpls.2019.00912 PMid:31404271 PMCid:PMC6671871 Chen K., Wang Y., Zhang R., Zhang H., and Gao C., 2019, CRISPR/Cas genome editing and precision plant breeding in agriculture, Annual Review of Plant Biology, 70: 667-697. https://doi.org/10.1146/annurev-arplant-050718-100049 PMid:30835493 Dai Y., Hu G., Dupas A., Medina L., Blandels N., Clemente H., Ladouce N., Badawi M., Hernandez-Raquet G., Mounet F., Grima-Pettenati J., and Cassan-Wang H., 2020, Implementing the CRISPR/Cas9 technology in Eucalyptus hairy roots using wood-related genes, International Journal of Molecular Sciences, 21(10): 3408. https://doi.org/10.3390/ijms21103408 PMid:32408486 PMCid:PMC7279396 Eckerstorfer M., Dolezel M., Engelhard M., Giovannelli V., Grabowski M., Heissenberger A., Lener M., Reichenbecher W., Simon S., Staiano G., Saucy A., Zünd J., and Lüthi C., 2023, Recommendations for the assessment of potential environmental effects of genome-editing applications in plants in the EU, Plants, 12(9): 1764. https://doi.org/10.3390/plants12091764 PMid:37176822 PMCid:PMC10180588 Li C., Brant E., Budak H., and Zhang B., 2021, CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement, Journal of Zhejiang University Science B, 22: 253-284. https://doi.org/10.1631/jzus.B2100009 PMid:33835761 PMCid:PMC8042526
RkJQdWJsaXNoZXIy MjQ4ODYzMg==