Molecular Plant Breeding 2024, Vol.15, No.5, 295-307 http://genbreedpublisher.com/index.php/mpb 305 Ayyenar B., Premnath A., Sudhakar D., and Muthurajan R., 2022, Allelic diversity of OsGW5.1 regulating grain width in rice, Madras Agricultural Journal, 109: 92-98. Bello L., Baiyegunhi L., and Danso-Abbeam G., 2020, Productivity impact of improved rice varieties’ adoption: case of smallholder rice farmers in Nigeria, Economics of Innovation and New Technology, 30: 750-766. https://doi.org/10.1080/10438599.2020.1776488 Bkhetan Z., Chana G., Ramamohanarao K., Verspoor K., and Goudey B., 2020, Evaluation of consensus strategies for haplotype phasing, Briefings in Bioinformatics, 22(4): bbaa280. https://doi.org/10.1093/bib/bbaa280 PMid:33236761 Brinton J., Ramírez-González R., Simmonds J., Wingen L., Orford S., Griffiths S., Haberer G., Spannagl M., Walkowiak S., Pozniak C., and Uauy C., 2020, A haplotype-led approach to increase the precision of wheat breeding, Communications Biology, 3: 712. https://doi.org/10.1038/s42003-020-01413-2 PMid:33239669 PMCid:PMC7689427 Cao L., Li T., Geng S., Zhang Y., Pan Y., Zhang X., Wang F., and Hao C., 2023, TaSPL14-7A is a conserved regulator controlling plant architecture and yield traits in common wheat (Triticum aestivumL.), Front. Plant Sci., 14: 1178624. https://doi.org/10.3389/fpls.2023.1178624 PMid:37089636 PMCid:PMC10113487 Chen Z., Bu Q., Liu G., Wang M., Wang H., Liu H., Li X., Li H., Fang J., Liang Y., Teng Z., Kang S., Yu H., Cheng Z., Xue Y., Liang C., Tang J., Li J., and Chu C., 2023, Genomic decoding of breeding history to guide breeding-by-design in rice, National Science Review, 10(5): nwad029. https://doi.org/10.1093/nsr/nwad029 PMid:37056426 PMCid:PMC10089590 Chitanda L., Mativavarira M., Manjeru P., Kang K., Nzuma J., Kamunhukamwe T., Hove T., and Madzingaidzo L., 2022, Performance of doubled haploid elite rice (Oryza sativa L.) germplasm for grain yield and associated traits in Harare, Zimbabwe, Advances in Agriculture, 1: 7393896. Elangovan D., Pandey R., Sharma S., Balamurugan B., Anand N., Das A., Kumar T., Ellur R., Kalia S., and Rane J., 2023, Haplo-pheno association for OsNRT1.1 paralog in rice reveals superior haplogroup with high nitrate uptake efficiency, bioRxiv, 12: 1-46. https://doi.org/10.1101/2023.12.07.570681 Faysal A., Ali L., Azam M., Sarker U., Ercişli S., Golokhvast K., and Marc R., 2022, Genetic variability, character association, and path coefficient analysis in transplant Aman rice genotypes, Plants, 11(21): 2952. https://doi.org/10.3390/plants11212952 PMid:36365406 PMCid:PMC9655179 Fruzangohar M., Timmins W., Kravchuk O., and Taylor J., 2022, HaploMaker: an improved algorithm for rapid haplotype assembly of genomic sequences, GigaScience, 11: giac038. https://doi.org/10.1093/gigascience/giac038 PMid:35579550 PMCid:PMC9112781 Garg S., 2021, Computational methods for chromosome-scale haplotype reconstruction, Genome Biology, 22: 101. https://doi.org/10.1186/s13059-021-02328-9 PMid:33845884 PMCid:PMC8040228 Gouda G., Gupta M., Donde R., Kumar J., Parida M., Mohapatra T., Dash S., Pradhan S., and Behera L., 2020, Characterization of haplotypes and single nucleotide polymorphisms associated with Gn1a for high grain number formation in rice plant, Genomics, 112(3): 2647-2657. https://doi.org/10.1016/j.ygeno.2020.02.016 PMid:32087244 Huang J., Pallotti S., Zhou Q., Kleber M., Xin X., King D., and Napolioni V., 2020, PERHAPS: paired-end short reads-based HAPlotyping from next-generation sequencing data, Briefings in Bioinformatics, 22(4): bbaa320. Kolesnikov A., Cook D., Nattestad M., Brambrink L., McNulty B., Gorzynski J., Goenka S., Ashley E., Jain M., Miga K., Paten B., Chang P., Carroll A., and Shafin K., 2024, Local read haplotagging enables accurate long-read small variant calling, Nature Communications, 15(1): 5907. https://doi.org/10.1038/s41467-024-50079-5 PMid:39003259 PMCid:PMC11246426 Li F., Xie J., Zhu X., Wang X., Zhao Y., Ma X., Zhang Z., Rashid M., Zhang Z., Zhi L., Zhang S., Li J., Li Z., and Zhang H., 2018, Genetic basis underlying correlations among growth duration and yield traits revealed by GWAS in rice (Oryza sativa L.), Frontiers in Plant Science, 9: 650. https://doi.org/10.3389/fpls.2018.00650 PMid:29872443 PMCid:PMC5972282 Li L., Wu X., Chen J., Wang S., Wan Y., Ji H., Wen Y., and Zhang J., 2022, Genetic dissection of epistatic interactions contributing yield-related agronomic traits in rice using the compressed mixed model, Plants, 11(19): 2504. Li S., Zhang Y., Fan C., Chen Y., Deng C., and Hu Z., 2018, Advances in haplotype analysis technique, Chinese Journal of Biotechnology, 34(6): 852-861. Liu G., Qiu D., Lu Y., Wu Y., Han X., Jiao Y., Wang T., Yang J., You A., Chen J., and Zhang Z., 2023, Identification of superior haplotypes and haplotype combinations for grain size- and weight-related genes for breeding applications in rice (Oryza sativa L.), Genes, 14(12): 2201. https://doi.org/10.3390/genes14122201 PMid:38137023 PMCid:PMC10742856
RkJQdWJsaXNoZXIy MjQ4ODYzMg==