MPB_2024v15n4

Molecular Plant Breeding 2024, Vol.15, No.4, 198-208 http://genbreedpublisher.com/index.php/mpb 207 Benavente E., and Giménez E., 2021, Modern approaches for the genetic improvement of rice, wheat and maize for abiotic constraints-related traits: a comparative overview, Agronomy, 11(2): 376. https://doi.org/10.3390/agronomy11020376 Cai Y.F., Chen B., Hou J.F., Zhao F.C., Wang G.Y., and Cai R.X., 2024, Genetic structure and diversity in Zea genus: implications for conservation and breeding, Maize Genomics and Genetics, 15(2): 70-79. Chen B., Hou J.F., Cai Y.F., Wang G.Y., Cai R.X., and Zhao F.C., 2024, Utilizing genetic diversity for maize improvement: strategies and success stories, Maize Genomics and Genetics, 15(3): 136-146. Fang H., Fu X., Wang Y., Xu J., Feng H., Li W., Xu J., Jittham O., Zhang X., Zhang L., Yang N., Xu G., Wang M., Li X., Li J., Yan J., and Yang X., 2019, Genetic basis of kernel nutritional traits during maize domestication and improvement, The Plant Journal, 101(2): 278-292. Gedil M., and Menkir A., 2019, An integrated molecular and conventional breeding scheme for enhancing genetic gain in maize in Africa, Frontiers in Plant Science, 10: 1430. https://doi.org/10.3389/fpls.2019.01430 PMid:31781144 PMCid:PMC6851238 Goldstein W., Jaradat A., Hurburgh C., Pollak L., and Goodman M., 2019, Breeding maize under biodynamic-organic conditions for nutritional value and N efficiency/N2 fixation, Open Agriculture, 4: 322-345. https://doi.org/10.1515/opag-2019-0030 Hake S., and Richardson A., 2019, Using wild relatives to improve maize, Science, 365: 640-641. https://doi.org/10.1126/science.aay5299 PMid:31416949 Hao M., Zhang L., Ning S., Huang L., Yuan Z., Wu B., Yan Z., Dai S., Jiang B., Zheng Y., and Liu D., 2020, The resurgence of introgression breeding, as exemplified in wheat improvement, Frontiers in Plant Science, 11: 252. https://doi.org/10.3389/fpls.2020.00252 PMid:32211007 PMCid:PMC7067975 Hossain F., Muthusamy V., Pandey N., Vishwakarma A., Baveja A., Zunjare R., Thirunavukkarasu N., Saha S., Manjaiah K., Prasanna B., and Gupta H., 2018, Marker-assisted introgression of opaque2 allele for rapid conversion of elite hybrids into quality protein maize, Journal of Genetics, 97: 287-298. https://doi.org/10.1007/s12041-018-0914-z PMid:29666347 Jiang S., Cheng Q., Yan J., Fu R., and Wang X., 2019, Genome optimization for improvement of maize breeding, Theoretical and Applied Genetics, 133: 1491-1502. Kamara M., Rehan M., Ibrahim K., Alsohim A., Elsharkawy M., Kheir A., Hafez E., and El‐Esawi M., 2020, Genetic diversity and combining ability of white maize inbred lines under different plant densities, Plants, 9(9): 1140. https://doi.org/10.3390/plants9091140 PMid:32899300 PMCid:PMC7570016 Kong D., Wang B., and Wang H., 2020, UPA2 and ZmRAVL1: promising targets of genetic improvement of maize plant architecture, Journal of Integrative Plant Biology, 62(4): 394-397. https://doi.org/10.1111/jipb.12873 PMid:31535754 Li L., Mao X., Wang J., Chang X., Reynolds M., and Jing R., 2019, Genetic dissection of drought and heat‐responsive agronomic traits in wheat, Plant, Cell and Environment, 42: 2540-2553. https://doi.org/10.1111/pce.13577 PMid:31077401 PMCid:PMC6851630 Liang X., Liu S., Wang T., Li F., Cheng J., Lai J., Qin F., Li Z., Wang X., and Jiang C., 2021, Metabolomics-driven gene mining and genetic improvement of tolerance to salt-induced osmotic stress in maize, The New Phytologist, 230(6): 2355-2370. https://doi.org/10.1111/nph.17323 PMid:33666235 Liu G., Yang H., Xie R., Yang Y., Liu W., Guo X., Xue J., Ming B., Wang K., Hou P., and Li S., 2021, Genetic gains in maize yield and related traits for high-yielding cultivars released during 1980s to 2010s in China, Field Crops Research, 270: 108223. https://doi.org/10.1016/j.fcr.2021.108223 Liu S., and Qin F., 2021, Genetic dissection of maize drought tolerance for trait improvement, Molecular Breeding, 41: 8. https://doi.org/10.1007/s11032-020-01194-w PMid:37309476 PMCid:PMC10236036 Liu Z., Zhao Y., Guo S., Cheng S., Guan Y., Cai H., Mi G., Yuan L., and Chen F., 2019, Enhanced crown root number and length confers potential for yield improvement and fertilizer reduction in nitrogen-efficient maize cultivars, Field Crops Research, 241: 107562. Lorenzo C., Debray K., Herwegh D., Develtere W., Impens L., Schaumont D., Vandeputte W., Aesaert S., Coussens G., Boe Y., Demuynck K., Hautegem T., Pauwels L., Jacobs T., Ruttink T., Nelissen H., and Inzé D., 2022, BREEDIT: a multiplex genome editing strategy to improve complex quantitative traits in maize, The Plant Cell, 35(1): 218-238. https://doi.org/10.1093/plcell/koac243

RkJQdWJsaXNoZXIy MjQ4ODYzMg==