MPB_2024v15n4

Molecular Plant Breeding 2024, Vol.15, No.4, 187-197 http://genbreedpublisher.com/index.php/mpb 196 Gupta P., Langridge P., and Mir R., 2010, Marker-assisted wheat breeding: present status and future possibilities, Molecular Breeding, 26: 145-161. https://doi.org/10.1007/s11032-009-9359-7 Hasan N., Choudhary S., Naaz N., Sharma N., and Laskar R., 2021, Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes, Journal of Genetic Engineering & Biotechnology, 19(1): 128. https://doi.org/10.1186/s43141-021-00231-1 PMid:34448979 PMCid:PMC8397809 Jena K., and Mackill D., 2008, Molecular markers and their use in marker-assisted selection in rice, Crop Science, 48: 1266-1276. https://doi.org/10.2135/cropsci2008.02.0082 Jiang M.G., Wei S.Z., and Zhou Y., 2024, Development of novel fermented tea products through microbial community engineering, Journal of Tea Science Research, 14(1): 44-51. https://doi.org/10.5376/jtsr.2024.14.0004 Karunarathna K., Mewan K., Weerasena O., Perera S., and Edirisinghe E., 2020, A functional molecular marker for detecting blister blight disease resistance in tea (Camellia sinensis L.), Plant Cell Reports, 40: 351-359. https://doi.org/10.1007/s00299-020-02637-6 PMid:33247387 Kim J., Jung Y., Seo H., Kim M., Nou I., and Kang K., 2019, Recurrent parent genome (RPG) recovery analysis in a marker-assisted backcross breeding based on the genotyping-by-sequencing in tomato (Solanum lycopersicumL.), Journal of Plant Biotechnology, 46(3): 165-171. https://doi.org/10.5010/JPB.2019.46.3.165 Kondratev N., Denton-Giles M., Bradshaw R., Cox M., and Dijkwel P., 2020, Camellia plant resistance and susceptibility to petal blight disease are defined by the timing of defence responses, Molecular Plant-Microbe Interactions, 33(7): 872-1006. https://doi.org/10.1094/MPMI-10-19-0304-R PMid:32223579 Li H., Song K., Li B., Zhang X., Wang D., Dong S., and Yang L., 2023, CRISPR/Cas9 editing sites identification and multi-elements association analysis in Camellia sinensis, International Journal of Molecular Sciences, 24(20): 15317. https://doi.org/10.3390/ijms242015317 PMid:37894996 PMCid:PMC10607008 Li Q., Su X., Ma H., Du K., Yang M., Chen B., Fu S., Fu T., Xiang C., Zhao Q., and Xu L., 2021, Development of genic SSR marker resources from RNA-seq data in Camellia japonica and their application in the genus Camellia, Scientific Reports, 11: 9919. https://doi.org/10.1038/s41598-021-89350-w PMid:33972624 PMCid:PMC8110538 Liu C.C., 2024, Interaction between tea tree root probiotics and tea yellowing disease, Journal of Tea Science Research, 14(1): 10-18. https://doi.org/10.5376/jtsr.2024.14.0002 Liu S., An Y., Li F., Li S., Liu L., Zhou Q., Zhao S., and Wei C., 2018, Genome-wide identification of simple sequence repeats and development of polymorphic SSR markers for genetic studies in tea plant (Camellia sinensis), Molecular Breeding, 38: 59. https://doi.org/10.1007/s11032-018-0824-z Lubanga N., Massawe F., Mayes S., Gorjanc G., and Bančič J., 2022, Genomic selection strategies to increase genetic gain in tea breeding programs, The Plant Genome, 16(1): e20282. https://doi.org/10.1002/tpg2.20282 PMid:36349831 Luo H., Pan X., Huang Y., Li Z., Ye H., Zhou K., Wen L., Qin J., He W., Du X., Wang D., and Lin Y., 2023, Genome-wide association study reveals markers and candidate genes associated with growth in the rice flower carp, an economic fish species of integrated rice-fish culture in China, Frontiers in Marine Science, 10: 1130667. https://doi.org/10.3389/fmars.2023.1130667 Ma J., Zhou Y., Ma C., Yao M., Jin J., Wang X., and Chen L., 2010, Identification and characterization of 74 novel polymorphic EST-SSR markers in the tea plant, Camellia sinensis (Theaceae), American Journal of Botany, 97(12): e153-e156. https://doi.org/10.3732/ajb.1000376 Malebe M., Koech R., Mbanjo E., Kamunya S., Myburg A., and Apostolides Z., 2021, Construction of a DArT-seq marker-based genetic linkage map and identification of QTLs for yield in tea (Camellia sinensis (L.) O. Kuntze), Tree Genetics & Genomes, 17: 9. https://doi.org/10.1007/s11295-021-01491-1 Miedaner T., and Korzun V., 2012, Marker-assisted selection for disease resistance in wheat and barley breeding, Phytopathology, 102(6): 560-566. https://doi.org/10.1094/PHYTO-05-11-0157 PMid:22568813 Sharma R., Bhardwaj P., Negi R., Mohapatra T., and Ahuja P., 2009, Identification, characterization and utilization of unigene derived microsatellite markers in tea (Camellia sinensis L.), BMC Plant Biology, 9: 53. https://doi.org/10.1186/1471-2229-9-53 PMid:19426565 PMCid:PMC2693106

RkJQdWJsaXNoZXIy MjQ4ODYzMg==