MPB_2024v15n4

Molecular Plant Breeding 2024, Vol.15, No.4, 178-186 http://genbreedpublisher.com/index.php/mpb 186 Liu L., Gallagher J., Arevalo E., Chen R., Skopelitis T., Wu Q., Bartlett M., and Jackson D., 2021a, Enhancing grain-yield-related traits by CRISPR–Cas9 promoter editing of maize CLEgenes, Nature Plants, 7: 287-294. https://doi.org/10.1038/s41477-021-00858-5 Liu Q., Yang F., Zhang J., Liu H., Rahman S., Islam S., Ma W., and She M., 2021b, Application of CRISPR/Cas9 in crop quality improvement, International Journal of Molecular Sciences, 22(8): 4206. https://doi.org/10.3390/ijms22084206 PMid:33921600 PMCid:PMC8073294 Park J., Kim E., Jang Y., Jan R., Farooq M., Ubaidillah M., and Kim K., 2022, Applications of CRISPR/Cas9 as new strategies for short breeding to drought gene in rice, Frontiers in Plant Science, 13: 850441. https://doi.org/10.3389/fpls.2022.850441 Peng B., Ma X., Yang T., Zheng M., Peng J., Tian X., Sun Y., Song X., Pang R., Li J., Wang Q., Zhou W., A X., and Yuan H., 2020, Application of CRISPR/Cas9 technology in the genetic improvement of rice yield and quality characters, Journal of Biology and Life Science, 11(2): 62-82. https://doi.org/10.5296/jbls.v11i2.17039 Rao M., and Wang L., 2021, CRISPR/Cas9 technology for improving agronomic traits and future prospective in agriculture, Planta, 254: 68. https://doi.org/10.1007/s00425-021-03716-y Ren B., Liu L., Li S., Kuang Y., Wang J., Zhang D., Zhou X., Lin H., and Zhou H., 2019, Cas9-NG greatly expands the targeting scope of the genome-editing toolkit by recognizing NG and other atypical PAMs in rice, Molecular Plant, 12(7): 1015-1026. https://doi.org/10.1016/j.molp.2019.03.010 PMid:30928635 Usman B., Nawaz G., Zhao N., Liao S., Qin B., Liu F., Liu Y., and Li R., 2020, Programmed editing of rice (Oryza sativa L.) OsSPL16 gene using CRISPR/Cas9 improves grain yield by modulating the expression of pyruvate enzymes and cell cycle proteins, International Journal of Molecular Sciences, 22(1): 249. https://doi.org/10.3390/ijms22010249 PMid:33383688 PMCid:PMC7795130 Usman B., Zhao N., Nawaz G., Qin B., Liu F., Liu Y., and Li R., 2021, CRISPR/Cas9 guided mutagenesis of Grain Size 3 confers increased rice (Oryza sativa L.) grain length by regulating cysteine proteinase inhibitor and ubiquitin-related proteins, International Journal of Molecular Sciences, 22(6): 3225. https://doi.org/10.3390/ijms22063225 PMid:33810044 PMCid:PMC8004693 Yimam Y., Zhou J., Akher S., Zheng X., Qi Y., and Zhang Y., 2021, Improving a quantitative trait in rice by multigene editing with CRISPR-Cas9, In: Bandyopadhyay A., and Thilmony R. (eds.), Rice genome engineering and gene editing, methods in molecular biology, Humana, New York, USA, pp.205-219. https://doi.org/10.1007/978-1-0716-1068-8_13 Zegeye W., Tsegaw M., Zhang Y., and Cao L., 2022, CRISPR-based genome editing: advancements and opportunities for rice improvement, International Journal of Molecular Sciences, 23(8): 4454. https://doi.org/10.3390/ijms23084454 PMid:35457271 PMCid:PMC9027422 Zeng Y., Wen J., Zhao W., Wang Q., and Huang W., 2020, Rational improvement of rice yield and cold tolerance by editing the three genes OsPIN5b, GS3, and OsMYB30 with the CRISPR–Cas9 system, Frontiers in Plant Science, 10: 1663. https://doi.org/10.3389/fpls.2019.01663 PMid:31993066 PMCid:PMC6964726 Zheng S., Ye C., Lu J., Liufu J., Lin L., Dong Z., Li J., and Zhuang C., 2021, Improving the rice photosynthetic efficiency and yield by editing OsHXK1 via CRISPR/Cas9 system, International Journal of Molecular Sciences, 22(17): 9554. https://doi.org/10.3390/ijms22179554 PMid:34502462 PMCid:PMC8430575 Zhou J., Xin X., He Y., Chen H., Li Q., Tang X., Zhong Z., Deng K., Zheng X., Akher S., Cai G., Qi Y., and Zhang Y., 2018, Multiplex QTL editing of grain-related genes improves yield in elite rice varieties, Plant Cell Reports, 38: 475-485. https://doi.org/10.1007/s00299-018-2340-3 PMid:30159598

RkJQdWJsaXNoZXIy MjQ4ODYzMg==