MPB_2024v15n4

Molecular Plant Breeding 2024, Vol.15, No.4, 155-166 http://genbreedpublisher.com/index.php/mpb 164 Dijoux J., Rio S., Hervouet C., Garsmeur O., Barau L., Dumont T., Rott P., D’Hont A., and Hoarau J.Y., 2024, Unveiling the predominance of Saccharum spontaneumalleles for resistance to orange rust in sugarcane using genome-wide association, Theor. Appl. Genet., 137: 81. https://doi.org/10.1007/s00122-024-04583-3 PMid:38478168 Eid A., Mohan C., Sanchez S., Wang D., and Altpeter F., 2021, Targeted mutagenesis of magnesium chelatase with CRISPR/Cas9 provides a rapidly scorable phenotype in highly polyploid sugarcane, Front. Genome Ed., 3: 654996. https://doi.org/10.3389/fgeed.2021.654996 Garsmeur O., Droc G., Antonise R., Grimwood J., Potier B., Aitken K., Jenkins J., Martin G., Charron C., Hervouet C., Costet L., Yahiaoui N., Healey A., Sims D., Cherukuri Y., Sreedasyam A., Kilian A., Chan A., Sluys M., Swaminathan K., Town C., Bergès H., Simmons B., Glaszmann J., Vossen E., Henry R., Schmutz J., and D’Hont A., 2018, A mosaic monoploid reference sequence for the highly complex genome of sugarcane, Nature Communications, 9: 2638. https://doi.org/10.1038/s41467-018-05051-5 PMid:29980662 PMCid:PMC6035169 Grivet L., and Arruda P., 2002, Sugarcane genomics: depicting the complex genome of an important tropical crop, Current Opinion in Plant Biology, 5(2): 122-127. https://doi.org/10.1016/S1369-5266(02)00234-0 PMid:11856607 Hayes B., Wei X., Joyce P., Atkin F., Deomano E., Yue J., Nguyen L., Ross E., Cavallaro T., Aitken K., and Voss-Fels K., 2021, Accuracy of genomic prediction of complex traits in sugarcane, Theoretical and Applied Genetics, 134: 1455-1462. https://doi.org/10.1007/s00122-021-03782-6 PMid:33590303 Healey A.L., Garsmeur O., Lovell J.T., Shengquiang S., Sreedasyam A., Jenkins J., Plott C.B., Piperidis N., Pompidor N., Llaca V., Metcalfe C.J., Doležel J., Cápal P., Carlson J.W., Hoarau J.Y., Hervouet C., Zini C., Dievart A., Lipzen A., Williams M., Boston L.B., Webber J., Keymanesh K., Tejomurthula S., Rajasekar S., Suchecki R., Furtado A., May G., Parakkal P., Simmons B.A., Barry K., Henry R.J., Grimwood J., Aitken K.S., Schmutz J., and D’Hont A., 2024, The complex polyploid genome architecture of sugarcane, Nature, 628: 804-810. https://doi.org/10.1038/s41586-024-07231-4 PMid:38538783 PMCid:PMC11041754 Hoang N., Furtado A., Mason P., Marquardt A., Kasirajan L., Thirugnanasambandam P., Botha F., and Henry R., 2017, A survey of the complex transcriptome from the highly polyploid sugarcane genome using full-length isoform sequencing and de novo assembly from short read sequencing, BMC Genomics, 18: 395. https://doi.org/10.1186/s12864-017-3757-8 PMid:28532419 PMCid:PMC5440902 Islam M., McCord P., Olatoye M., Qin L., Sood S., Lipka A., and Todd J., 2021, Experimental evaluation of genomic selection prediction for rust resistance in sugarcane, The Plant Genome, 14(3): e20148. https://doi.org/10.1002/tpg2.20148 PMid:34510803 Kang Y.J., 2019, Sugarcane ORF finder: the web-application for mining genes from sugarcane genome, Plant Biotechnology Reports, 13: 553-558. https://doi.org/10.1007/s11816-019-00574-9 Khan M., Khan I., and Yasmeen S., 2019, Genetically modified sugarcane for biofuels production: status and perspectives of conventional transgenic approaches, RNA interference, and genome editing for improving sugarcane for biofuels, In: Khan M., and Khan I. (eds.), Sugarcane biofuels, Springer, Cham, Switzerland, pp.67-96. https://doi.org/10.1007/978-3-030-18597-8_4 Krishna S.S., Viswanathan R., Valarmathi R., Lakshmi K., and Appunu C., 2023, CRISPR/Cas-mediated genome editing approach for improving virus resistance in sugarcane, Sugar Tech., 25: 735-750. https://doi.org/10.1007/s12355-023-01252-5 Lang D., Zhang S., Ren P., Liang F., Sun Z., Meng G., Tan Y., Li X., Lai Q., Han L., Wang D., Hu F., Wang W., and Liu S., 2020, Comparison of the two up-to-date sequencing technologies for genome assembly: HiFi reads of Pacific Biosciences Sequel II system and ultralong reads of Oxford Nanopore, GigaScience, 9(12): giaa123. https://doi.org/10.1093/gigascience/giaa123 PMid:33319909 PMCid:PMC7736813 Lu G., Wang Z., Pan Y., Wu Q., Cheng W., Xu F., Dai S., Li B., Que Y., and Xu L., 2023, Identification of QTLs and critical genes related to sugarcane mosaic disease resistance, Frontiers in Plant Science, 14: 1107314. https://doi.org/10.3389/fpls.2023.1107314 PMid:36818882 PMCid:PMC9932707 Lu S., Zhang H., Guo F., Yang Y., Shen X., and Chen B., 2022, SsUbc2 a determinant of pathogenicity functions as a key coordinator controlling global transcriptomic reprogramming during mating in sugarcane smut fungus, Frontiers in Microbiology 13: 954767. https://doi.org/10.3389/fmicb.2022.954767 PMid:36204604 PMCid:PMC9530204

RkJQdWJsaXNoZXIy MjQ4ODYzMg==