MPB_2024v15n3

Molecular Plant Breeding 2024, Vol.15, No.3, 144-154 http://genbreedpublisher.com/index.php/mpb 153 Liu J., Schoettle A., Sniezko R., Yao F., Zamany A., Williams H., and Rancourt B., 2019, Limber pine (Pinus flexilis James) genetic map constructed by exome-seq provides insight into the evolution of disease resistance and a genomic resource for genomics-based breeding, The Plant Journal, 98(4): 745-758. https://doi.org/10.1111/tpj.14270 PMid:30729601 Manghwar H., Lindsey K., Zhang X., and Jin S., 2019, CRISPR/Cas system: recent advances and future prospects for genome editing, Trends in Plant Science, 24(12): 1102-1125. https://doi.org/10.1016/j.tplants.2019.09.006 PMid:31727474 Mishra R., Zheng W., Joshi R., and Zhao K., 2021, Genome editing strategies towards enhancement of rice disease resistance, Rice Science, 28: 133-145. https://doi.org/10.1016/j.rsci.2021.01.003 Mushtaq M., Sakina A., Wani S., Shikari A., Tripathi P., Zaid A., Galla A., Abdelrahman M., Sharma M., Singh A., and Salgotra R., 2019, Harnessing genome editing techniques to engineer disease resistance in plants, Frontiers in Plant Science, 10: 550. https://doi.org/10.3389/fpls.2019.00550 PMid:31134108 PMCid:PMC6514154 Nascimento F., Rocha A., Soares J., Mascarenhas M., Ferreira M., Lino L., Ramos A., Diniz L., Mendes T., Ferreira C., Santos-Serejo J., and Amorim E., 2023, Gene editing for plant resistance to abiotic factors: a systematic review, Plants, 12(2): 305. https://doi.org/10.3390/plants12020305 PMid:36679018 PMCid:PMC9860801 Proudfoot C., Lillico S., and Tait-Burkard C., 2019, Genome editing for disease resistance in pigs and chickens, Animal Frontiers: The Review Magazine of Animal Agriculture, 9: 6-12. https://doi.org/10.1093/af/vfz013 PMid:32002257 PMCid:PMC6951997 Rodriguez-Rodriguez D., Ramírez‐Solís R., Garza-Elizondo M., Garza-Rodríguez M., and Barrera-Saldana H., 2019, Genome editing: a perspective on the application of CRISPR/Cas9 to study human diseases (review), International Journal of Molecular Medicine, 43: 1559-1574. https://doi.org/10.3892/ijmm.2019.4112 PMid:30816503 PMCid:PMC6414166 Schene I., Joore I., Oka R., Mokry M., Vugt A., Boxtel R., Doef H., Laan L., Verstegen M., Hasselt P., Nieuwenhuis E., and Fuchs S., 2020, Prime editing for functional repair in patient-derived disease models, Nature Communications, 11: 5352. https://doi.org/10.1038/s41467-020-19136-7 PMid:33097693 PMCid:PMC7584657 Sharma G., Sharma A., Bhattacharya M., Lee S., and Chakraborty C., 2020, CRISPR-Cas9: a preclinical and clinical perspective for the treatment of human diseases, Molecular Therapy, 29(2): 571-586. https://doi.org/10.1016/j.ymthe.2020.09.028 PMid:33238136 PMCid:PMC7854284 Sniezko R., Smith J., Liu J., and Hamelin R., 2014, Genetic resistance to fusiform rust in southern pines and white pine blister rust in white pines-a contrasting tale of two rust pathosystems- current status and future prospects, Forests, 5(9): 2050-2083. https://doi.org/10.3390/f5092050 Sun T., Rahman M., Wu X., and Ye J., 2023, Resistant and susceptible Pinus thunbergii ParL. show highly divergent patterns of differentially expressed genes during the process of infection by Bursaphelenchus xylophilus, International Journal of Molecular Sciences, 24(18): 14376. https://doi.org/10.3390/ijms241814376 PMid:37762682 PMCid:PMC10531596 Wan D., Guo Y., Cheng Y., Hu Y., Xiao S., Wang Y., and Wen Y., 2020, CRISPR/Cas9-mediated mutagenesis of VvMLO3 results in enhanced resistance to powdery mildew in grapevine (Vitis vinifera), Horticulture Research, 7: 116. https://doi.org/10.1038/s41438-020-0339-8 PMid:32821399 PMCid:PMC7395163 Weiss M., Sniezko R., Puiu D., Crepeau M., Stevens K., Salzberg S., Langley C., Neale D., and Torre A., 2020, Genomic basis of white pine blister rust quantitative disease resistance and its relationship with qualitative resistance, The Plant Journal, 104(2): 365-376. https://doi.org/10.1111/tpj.14928 PMid:32654344 PMCid:PMC10773528 Wilcox P., Amerson H., Kuhlman E., Liu B., O'Malley D., and Sederoff R., 1996, Detection of a major gene for resistance to fusiform rust disease in loblolly pine by genomic mapping, Proc. Natl. Acad. Sci. USA, 93(9): 3859-3864. https://doi.org/10.1073/pnas.93.9.3859 PMid:8632980 PMCid:PMC39449 Wright J., Stevens K., Hodgskiss P., and Langley C., 2022, SNPs in a large genomic scaffold are strongly associated with Cr1R, major gene for resistance to white pine blister rust in range-wide samples of sugar pine (Pinus lambertiana), Plant Disease, 106(6): 1639-1644. https://doi.org/10.1094/PDIS-08-21-1608-RE PMid:35512301

RkJQdWJsaXNoZXIy MjQ4ODYzMg==