MPB_2024v15n3

Molecular Plant Breeding 2024, Vol.15, No.3, 144-154 http://genbreedpublisher.com/index.php/mpb 152 Acknowledgments The authors appreciate the feedback from two anonymous peer reviewers on the manuscript of this study. Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Ahmad S., Wei X., Sheng Z., Hu P., and Tang S., 2020, CRISPR/Cas9 for development of disease resistance in plants: recent progress, limitations and future prospects, Briefings in Functional Genomics, 19(1): 26-39. https://doi.org/10.1093/bfgp/elz041 PMid:31915817 Bodea C., Mitchell A., Bloemendal A., Day-Williams A., Runz H., and Sunyaev S., 2018, PINES: phenotype-informed tissue weighting improves prediction of pathogenic noncoding variants, Genome Biology, 19: 173. https://doi.org/10.1186/s13059-018-1546-6 PMid:30359302 PMCid:PMC6203199 Borrelli V., Brambilla V., Rogowsky P., Marocco A., and Lanubile A., 2018, The enhancement of plant disease resistance using CRISPR/Cas9 technology, Frontiers in Plant Science, 9: 1245. https://doi.org/10.3389/fpls.2018.01245 PMid:30197654 PMCid:PMC6117396 Charlesworth C., Deshpande P., Dever D., Camarena J., Lemgart V., Cromer M., Vakulskas C., Collingwood M., Zhang L., Bode N., Behlke M., Dejene B., Cieniewicz B., Romano R., Lesch B., Gomez-Ospina N., Mantri S., Pavel-Dinu M., Weinberg K., and Porteus M., 2018, Identification of preexisting adaptive immunity to Cas9 proteins in humans, Nature Medicine, 25: 249-254. https://doi.org/10.1038/s41591-018-0326-x PMid:30692695 PMCid:PMC7199589 Chen Y., and Lu J., 2020, Application of CRISPR/Cas9 mediated gene editing in trees, Hereditas, 42(7): 657-668. El-Mounadi K., Morales-Floriano M., and Garcia-Ruiz H., 2020, Principles, applications, and biosafety of plant genome editing using CRISPR-Cas9, Frontiers in Plant Science, 11: 56. https://doi.org/10.3389/fpls.2020.00056 PMid:32117392 PMCid:PMC7031443 Fernandez-Gutierrez A., and Gutierrez-Gonzalez J., 2021, Bioinformatic-based approaches for disease-resistance gene discovery in plants, Agronomy, 11(11): 2259. https://doi.org/10.3390/agronomy11112259 Hadjadj L., Baron S., Diene S., and Rolain J., 2019, How to discover new antibiotic resistance genes? Expert Review of Molecular Diagnostics, 19: 349-362. https://doi.org/10.1080/14737159.2019.1592678 PMid:30895843 Kim Y., Moon H., and Park C., 2019, CRISPR/Cas9-targeted mutagenesis of Os8N3 in rice to confer resistance to Xanthomonas oryzae pv. oryzae, Rice, 12: 67. https://doi.org/10.1186/s12284-019-0325-7 PMid:31446506 PMCid:PMC6708514 Kourelis J., and Hoorn R., 2018, Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function, Plant Cell, 30: 285-299. https://doi.org/10.1105/tpc.17.00579 PMid:29382771 PMCid:PMC5868693 Li C., Brant E., Budak H., and Zhang B., 2021, CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement, Journal of Zhejiang University-Science B, 22: 253-284. https://doi.org/10.1631/jzus.B2100009 PMid:33835761 PMCid:PMC8042526 Liu J., Fernandes H., Zamany A., Sikorski M., Jaskólski M., and Sniezko R., 2021, In-vitro anti-fungal assay and association analysis reveal a role for the Pinus monticola PR10 gene (PmPR10-3.1) in quantitative disease resistance to white pine blister rust, Genome, 64(7): 693-704. https://doi.org/10.1139/gen-2020-0080 PMid:33464999

RkJQdWJsaXNoZXIy MjQ4ODYzMg==