MPB_2024v15n3

Molecular Plant Breeding 2024, Vol.15, No.3, 112-131 http://genbreedpublisher.com/index.php/mpb 130 Mathiazhagan M., Chidambara B., Hunashikatti L., and Ravishankar K., 2021, Genomic approaches for improvement of tropical fruits: fruit quality, shelf life and nutrient content, Genes, 12(12): 1881. https://doi.org/10.3390/genes12121881 PMid:34946829 PMCid:PMC8701245 Minamikawa M., Nonaka K., Kaminuma E., Kajiya-Kanegae H., Onogi A., Goto S., Yoshioka T., Imai A., Hamada H., Hayashi T., Matsumoto S., Katayose Y., Toyoda A., Fujiyama A., Nakamura Y., Shimizu T., and Iwata H., 2017, Genome-wide association study and genomic prediction in citrus: potential of genomics-assisted breeding for fruit quality traits, Scientific Reports, 7(1): 4721. https://doi.org/10.1038/s41598-017-05100-x PMid:28680114 PMCid:PMC5498537 Montero-Pau J., Blanca J., Bombarely A., Ziarsolo P., Esteras C., Martí-Gómez C., Ferriol M., Gómez P., Jamilena, M., Mueller L., Picó B., and Cañizares J., 2017, De novo assembly of the zucchini genome reveals a whole‐genome duplication associated with the origin of the Cucurbita genus, Plant Biotechnology Journal, 16: 1161-1171. https://doi.org/10.1111/pbi.12860 PMid:29112324 PMCid:PMC5978595 Oren E., Tzuri G., Dafna A., Rees E., Song B., Freilich S., Elkind Y., Isaacson T., Schaffer A., Tadmor Y., Burger J., Buckler E., and Gur A., 2022, QTL mapping and genomic analyses of earliness and fruit ripening traits in a melon recombinant inbred lines population supported by de novo assembly of their parental genomes, Horticulture Research, 9: uhab081. https://doi.org/10.1093/hr/uhab081 PMid:35043206 PMCid:PMC8968493 Pan Y., Wang Y., McGregor C., Liu S., Luan F., Gao M., and Weng Y., 2019, Genetic architecture of fruit size and shape variation in cucurbits: a comparative perspective, Theoretical and Applied Genetics, 133: 1-21. https://doi.org/10.1007/s00122-019-03481-3 PMid:31768603 Park G., Kim N., and Park Y., 2015, Genomics and molecular markers for major Cucurbitaceae crops, Journal of Life Science, 25: 1059-1071. https://doi.org/10.5352/JLS.2015.25.9.1059 Paris H., 2016, Overview of the origins and history of the five major cucurbit crops: issues for ancient DNA analysis of archaeological specimens, Vegetation History and Archaeobotany, 25: 405-414. https://doi.org/10.1007/s00334-016-0555-1 Payel D., Maľa P., and Sunita S., 2015, Inter-genus variation analysis in few members of Cucurbitaceae based on ISSR markers, Biotechnology & Biotechnological Equipment, 29: 882-886. https://doi.org/10.1080/13102818.2015.1052760 Pereira L., Ruggieri V., Pérez S., Alexiou K., Fernández M., Jahrmann T., Pujol M., and Garcia-Mas J., 2018, QTL mapping of melon fruit quality traits using a high-density GBS-based genetic map, BMC Plant Biology, 18(1): 324. https://doi.org/10.1186/s12870-018-1537-5 PMid:30509167 PMCid:PMC6278158 Ramamurthy R., and Waters B., 2015. Identification of fruit quality and morphology QTLs in melon (Cucumis melo) using a population derived from flexuosus and cantalupensis botanical groups, Euphytica, 204: 163-177. https://doi.org/10.1007/s10681-015-1361-z Rehman S., Rashid A., Manzoor M., Li L., Sun W., Riaz M., Li D., and Zhuge Q., 2022, Genome-wide evolution and comparative analysis of superoxide dismutase gene family in Cucurbitaceae and expression analysis of Lagenaria siceraria under multiple abiotic stresses, Frontiers in Genetics, 12: 784878. https://doi.org/10.3389/fgene.2021.784878 PMid:35211150 PMCid:PMC8861505 Renner S., and Schaefer H., 2016, Phylogeny and evolution of the Cucurbitaceae, pp.13-23. https://doi.org/10.1007/7397_2016_14 Sáez C., Martínez C., Montero-Pau J., Esteras C., Sifres A., Blanca J., Ferriol M., López C., and Picó B., 2020, A major QTL located in chromosome 8 of Cucurbita moschata is responsible for resistance to tomato leaf curl new delhi virus, Frontiers in Plant Science, 11: 207. https://doi.org/10.3389/fpls.2020.00207 PMid:32265946 PMCid:PMC7100279 Schaefer H., Heibl C., and Renner S., 2009, Gourds afloat: a dated phylogeny reveals an Asian origin of the gourd family (Cucurbitaceae) and numerous oversea dispersal events, Proceedings of the Royal Society B: Biological Sciences, 276: 843-851. Shafiin W., Ablah N., Fatihah H., Alam M., Ma’arup R., Jahan M., Mustafa K., and Alias N., 2020, Breeding strategies for enhancing nutrient content and quality in Cucurbitaceae: a review, International Journal of Vegetable Science, 27: 415-438. Shi L., Yang Y., Xie Q., Miao H., Bo K., Song Z., Wang Y., Xie B., Zhang S., and Gu X., 2018, Inheritance and QTL mapping of cucumber mosaic virus resistance in cucumber (Cucumis sativus L.), PLoS One, 13(7): e0200571. https://doi.org/10.1371/journal.pone.0200571 PMid:30021020 PMCid:PMC6051622

RkJQdWJsaXNoZXIy MjQ4ODYzMg==