MPB_2024v15n3

Molecular Plant Breeding 2024, Vol.15, No.3, 112-131 http://genbreedpublisher.com/index.php/mpb 119 4.3 Impact of genetic engineering and biotechnological approaches While the provided data does not explicitly detail the impact of genetic engineering and biotechnological approaches on Cucurbitaceae, the mapping and characterization of genetic traits, as well as the understanding of genetic diversity, lay the groundwork for future biotechnological interventions. The knowledge gained from these genomic studies can be applied to genetic engineering efforts aimed at improving crop traits, resistance to diseases, and adaptation to environmental stresses. The extensive genetic information available for Cucurbitaceae can facilitate targeted breeding programs and the development of genetically modified crops that meet the demands of a growing population and changing climate conditions. 5 Breeding Achievements in Cucurbitaceae 5.1 Historical perspective on breeding techniques and their evolution The Cucurbitaceae family, encompassing a wide variety of economically and nutritionally important crops, has undergone significant breeding advancements over time. Historically, the improvement of these crops relied heavily on classical breeding and selection methods, which facilitated the rapid development of staple crops within the family, such as pumpkins, squashes, cucumbers, watermelons, and melons (Shafiin et al., 2020). These traditional techniques were the cornerstone of breeding programs aimed at enhancing the yield, quality, and nutritional value of cucurbit crops. However, the narrow genetic bases and low variation rates inherent to cucurbit crops presented challenges, leading to a breeding bottleneck that necessitated the adoption of more innovative approaches (Figure 5) (Feng et al., 2023). Figure 5 Agrobacterium-mediated transformation in Cucurbit crops (Adopted from Feng et al., 2023) Image caption: This diagram illustrates the major technique currently adopted for genetic transformation in cucurbit crops using cotyledons as explants. It highlights the critical factors influencing transformation efficiency, including the choice of Agrobacterium strain, infection method, regeneration efficiency of the plant, screening methods, and the application of exogenous phytohormones. Recent advancements in the transformation process are also depicted, showing improvements through genotype screening, diverse screening markers, and the use of morphogenic genes, leading to enhanced efficiency in genetic transformation (Adapted from Feng et al., 2023) The exploration of Agrobacterium-mediated genetic transformation techniques in cucurbit crops is a crucial advancement for cucurbit genomics and biotechnology. The detailed discussion on optimizing transformation processes based on several key factors provides valuable insights for researchers looking to improve genetic transformation efficiencies in these crops (Feng et al., 2023). The integration of new genetic tools and methodologies, such as the use of morphogenic genes and diverse screening markers, enhances the potential for developing cucurbit varieties with desired traits more efficiently. This research by Feng et al. (2023) is pivotal for addressing challenges related to disease resistance, fruit quality, and yield improvements in cucurbit crops, potentially leading to more sustainable agricultural practices and better crop varieties suited to diverse environmental conditions.

RkJQdWJsaXNoZXIy MjQ4ODYzMg==