MPB_2024v15n3

Molecular Plant Breeding 2024, Vol.15, No.3, 112-131 http://genbreedpublisher.com/index.php/mpb 118 Figure 4 Evolutionary histories of tendril and fruit type in Cucurbitaceae (Adopted from Guo et al., 2020) Image caption: Panel A presents a chronogram at the genus level, mapping the ancestral character states of fruit types and tendrils under the maximum parsimony criterion, with ages corresponding to the timeline at the bottom. Generic names are listed, separated by different background colors indicating major clades identified in the study. Panel B showcases representative fruit types, including Neoalsomitra integrifoliola (dehiscent capsule), Citrullus lanatus (indehiscent pepo), Schizopepon bryoniifolius (dehiscent pepo), Coccinia grandis (berry), and Cyclantheropsis parviflora (samara), illustrating the diversity of fruit morphologies within the family (Adapted from Guo et al., 2020) This study by Guo et al. (2020) offers significant insights into the morphological evolution within the Cucurbitaceae family, particularly focusing on the diversification of fruit types and tendril forms. By employing a detailed phylogenetic framework, the research illustrates how specific traits have evolved in response to ecological and evolutionary pressures. Understanding these patterns is crucial for comprehending the adaptive strategies of Cucurbitaceae, which can have direct implications for agriculture, especially in the context of breeding and conservation. The analysis not only helps in piecing together the evolutionary history of these plant traits but also aids in predicting how they might change in response to future environmental conditions. This kind of evolutionary insight is invaluable for developing strategies to preserve the genetic diversity and adaptability of cucurbit crops. 4.2 Contributions of genomic studies to understanding genetic diversity Genomic studies have been instrumental in unraveling the genetic diversity within the Cucurbitaceae family. By utilizing inter simple sequence repeat (ISSR) markers, researchers have been able to analyze the genetic relationships among selected species of cucurbits, revealing significant diversification even among members of the same genus (Payel et al., 2015). This level of genetic diversity is crucial for the speciation and acclimatization of plants within their environments. The phylogram generated from these studies has provided insights into the close genetic relationships between species such as C. maderaspatanus and C. melo, while highlighting the genetic distance of C. sativus from these species (Payel et al., 2015).

RkJQdWJsaXNoZXIy MjQ4ODYzMg==