MPB_2024v15n3

Molecular Plant Breeding 2024, Vol.15, No.3, 112-131 http://genbreedpublisher.com/index.php/mpb 117 Figure 3 Genome evolution and ancestral karyotype reconstruction in Cucurbitaceae (Adopted from Xie et al., 2019) Image caption: This figure illustrates the conserved genome karyotype of the wax gourd alongside the identification of the 15 ancestral chromosomes across six sequenced cucurbit species. Panel (a) displays the 12 wax gourd chromosomes, color-coded to indicate the origins of the ancestral chromosomes (Bhi: Benincasa hispida; Cma: Cucurbita maxima; Cme: Cucumis melo; Lsi: Lagenaria siceraria; Cla: Citrullus lanatus; Csa: Cucumis sativus). Panel (b) outlines the evolutionary scenario of the Cucurbitaceae genomes, tracing back to the ancestral Cucurbitaceae karyotype, with significant evolutionary events such as specific whole-genome duplications (sWGD) and cucurbit-common tetraploidization (CCT) marked (Adapted from Xie et al., 2019) 4 Genetic Advances in Cucurbitaceae 4.1 Mapping and characterization of key genetic traits Recent studies have made significant strides in mapping and characterizing the genetic traits that define the Cucurbitaceae family. A comprehensive phylogenetic analysis incorporating 127 newly sequenced transcriptomes and genomes has revealed multiple whole genome duplications (WGD) that have played a pivotal role in the diversification of the family (Guo et al., 2020). These duplications have been linked to key morphological and molecular innovations, such as the development of tendrils and pepo fruits, which are characteristic of the family. The identification of the cucurbit-specific tendril identity gene TEN, which originated from a paleo-polyploidization event, underscores the importance of genetic mapping in understanding the evolutionary history of Cucurbitaceae (Figure 4) (Guo et al., 2020).

RkJQdWJsaXNoZXIy MjQ4ODYzMg==