MPB_2024v15n3

Molecular Plant Breeding 2024, Vol.15, No.3, 112-131 http://genbreedpublisher.com/index.php/mpb 114 Figure 1 Illustration of domestication syndrome in Cucurbitaceae crops (Adopted from Chomicki et al., 2019) Image caption: This figure contrasts the phenotypic characteristics of wild progenitors with their domesticated descendants within the Cucurbitaceae family. (a, b) Display honey melon (Cucumis melo) with (a) showing the wild melon progenitor, Asian agrestis (Cucumis melo subsp. melo f. agrestis), and (b) the domesticated melon from the Asian lineage. (c, d) Watermelon (Citrullus lanatus) with (c) depicting the wild watermelon progenitor, Kordofan melon (Citrullus lanatus subsp. cordophanus), and (d) the domesticated watermelon. (e, f) Cucumber (Cucumis sativus) with (e) the wild cucumber progenitor (C. sativus f. hardwickii) and (f) the domesticated cucumber. This visual comparison underscores the significant morphological changes resulting from domestication processes (Adapted from Chomicki et al., 2019) 2.4 Phylogenetic studies and genetic data supporting evolutionary pathways Phylogenetic studies using molecular data, such as the internal transcribed spacer regions (ITS1 and ITS2) of nuclear ribosomal RNA genes, have provided insights into the relationships among different members of the Cucurbitaceae family. These studies have revealed a polyphyletic origin for New World species and have highlighted the role of introgression and polyploidization events in the evolution of the family (Jobst et al., 1998). Additionally, chloroplast DNA sequences have been used to infer phylogenies, which have helped clarify the classification of the family and the evolution of key characters such as flower and fruit morphology (Kocyan et al., 2007).

RkJQdWJsaXNoZXIy MjQ4ODYzMg==