MPB_2024v15n3

Molecular Plant Breeding 2024, Vol.15, No.3, 90-99 http://genbreedpublisher.com/index.php/mpb 99 Wang Q., Liu Q., Gao Y., and Liu X., 2017, Research progress on the response mechanism of plants to salt alkali stress, Journal of Ecology, (16): 5565-5577. Wang Y., 2020, Study on stress tolerance of transgenic tobacco overexpressing Lilium pumilumLpNAC5 and LpNAC13, Thesis for M.S., Northeast Forestry University, Supervisor: Zhang Y.N., pp.93. Wang Y., Cao S., Guan C., Kong X., Wang Y., Cui Y., Liu B., Zhou Y., and Zhang Y., 2020b, Overexpressing the NAC transcription factor LpNAC13 from Lilium pumilumin tobacco negatively regulates the drought response and positively regulates the salt response, Plant Physiology and Biochemistry, 149: 96-110. https://doi.org/10.1016/j.plaphy.2020.01.036 PMid:32058898 Wang Z., Xia Y., Lin S., Wang Y., Guo B., Song X., Ding S., Zheng L., Feng R., Chen S., Bao Y., Sheng C., Zhang X., Wu J., Niu D., Jin H., and Zhao H., 2018, Osa-miR164a targets OsNAC60 and negatively regulates rice immunity against the blast fungus Magnaporthe oryzae, The Plant Journal, 95(4): 584-597. https://doi.org/10.1111/tpj.13972 PMid:29775494 Xi Y., Ling Q., Zhou Y., Liu X., and Qian Y., 2022, ZmNAC074, a maize stress-responsive NAC transcription factor, confers heat stress tolerance in transgenic Arabidopsis, Frontiers in Plant Science, 13: 986628. https://doi.org/10.3389/fpls.2022.986628 PMid:36247610 PMCid:PMC9558894 Xin Y., Huang R., Xu M., and Xu L., 2023, Transcriptome-wide identification and response pattern analysis of the Salix integra NAC transcription factor in response to Pb stress, International Journal of Molecular Sciences, 24(14): 11334. https://doi.org/10.3390/ijms241411334 PMid:37511094 PMCid:PMC10379125 Xiong C., Guo Z., Zhou Q., Cheng Y., Ma Q., Cai Z., and Nian H., 2024, Function analysis of the soybean transcription factor NAC1 in tolerance to low phosphorus, Scientia Agricultura Sinica, 57(3): 442-453. Xu Z.Y., Kim S.Y., Hyeon D.Y., Kim D.H., Dong T., Park Y., Jin J.B., Joo S.H., Kim S.K., Hong J.C., Hwang D., and Hwang I., 2013, The Arabidopsis NAC transcription factor ANAC096 cooperates with bZIP-Type transcription factors in dehydration and osmotic stress responses, The Plant Cell, 25(11): 4708-4724. https://doi.org/10.1105/tpc.113.119099 PMid:24285786 PMCid:PMC3875745 Yan H., Liu B., Cui Y., Wang Y., Sun S., Wang J., Tan M., Wang Y., and Zhang Y., 2022, LpNAC6 reversely regulates the alkali tolerance and drought tolerance of Lilium pumilum, Journal of Plant Physiology, 270: 153635. https://doi.org/10.1016/j.jplph.2022.153635 PMid:35124291 Yong Y., Zhang Y., and Lyu Y., 2019, A stress-responsive NAC transcription factor from tiger lily (LlNAC2) interacts with LlDREB1 and LlZHFD4 and enhances various abiotic stress tolerance in Arabidopsis, International Journal of Molecular Sciences, 20(13): 3225. https://doi.org/10.3390/ijms20133225 PMid:31262062 PMCid:PMC6651202 Zhang X., Long Y., Chen X., Zhang B., Xin Y., Li L., Cao S., Liu F., Wang Z., Huang H., Zhou D., and Xia J., 2021a, A NAC transcription factor OsNAC3 positively regulates ABA response and salt tolerance in rice, BMC Plant Biology, 21(1): 546. https://doi.org/10.1186/s12870-021-03333-7 PMid:34800972 PMCid:PMC8605558 Zhang Y., Geng H., Cui Z., Wang H., and Liu D., 2021b, Functional analysis of wheat NAC transcription factor, TaNAC069, in regulating resistance of wheat to leaf rust fungus, Frontiers in Plant Science, 12: 604797. https://doi.org/10.3389/fpls.2021.604797 PMid:33790919 PMCid:PMC8005738 Zhou H., Huang H., Xu B., Su X., Deng R., Hong Y., Jiang M., Song F., and Zhang H., 2017, Functions of NAC transcription factors in plant responses to biotic and abiotic stresses, Plant Physiology Journal, 53(8): 1372-1382.

RkJQdWJsaXNoZXIy MjQ4ODYzMg==