MPB_2024v15n2

Molecular Plant Breeding 2024, Vol.15, No.2, 81-89 http://genbreedpublisher.com/index.php/mpb 89 Saber A., Liu B., Ebrahimi P., and Haisma H., 2019, CRISPR/Cas9 for overcoming drug resistance in solid tumors, DARU Journal of Pharmaceutical Sciences, 28: 295-304. https://doi.org/10.1007/s40199-019-00240-z PMid:30666557 PMCid:PMC7214581 Wang J., Wu H., Chen Y., and Yin T., 2020, Efficient CRISPR/Cas9-mediated gene editing in an interspecific hybrid poplar with a highly heterozygous genome, Frontiers in Plant Science, 11: 996. https://doi.org/10.3389/fpls.2020.00996 PMid:32719704 PMCid:PMC7347981 Wang Y., Zafar N., Ali Q., Manghwar H., Wang G., Yu L., Ding X., Ding F., Hong N., Wang G., and Jin S., 2022, CRISPR/Cas genome editing technologies for plant improvement against biotic and abiotic stresses: advances, limitations, and future perspectives, Cells, 11(23): 3928. https://doi.org/10.3390/cells11233928 PMid:36497186 PMCid:PMC9736268 Zafar S., Zaidi S., Gaba Y., Singla-Pareek S., Dhankher O., Li X., Mansoor S., and Pareek A., 2020, Engineering abiotic stress tolerance via CRISPR-Cas mediated genome editing, Journal of Experimental Botany, 71(2): 470-479. https://doi.org/10.1093/jxb/erz476 PMid:31644801 Zhu H., Li C., and Gao C., 2020, Applications of CRISPR-Cas in agriculture and plant biotechnology, Nature Reviews Molecular Cell Biology, 21: 661-677. https://doi.org/10.1038/s41580-020-00288-9 PMid:32973356

RkJQdWJsaXNoZXIy MjQ4ODYzMg==